Update README.md
Browse files
README.md
CHANGED
@@ -18,7 +18,7 @@ It was introduced in the paper [ColPali: Efficient Document Retrieval with Visio
|
|
18 |
|
19 |
## Version specificity
|
20 |
|
21 |
-
This version is trained with `colpali-engine==0.2.0`.
|
22 |
|
23 |
Compared to `colpali`, this version is trained with right padding for queries to fix unwanted tokens in the query encoding.
|
24 |
It also stems from the fixed `vidore/colpaligemma-3b-pt-448-base` to guarantee deterministic projection layer initialization.
|
@@ -52,89 +52,53 @@ We train on an 8 GPU setup with data parallelism, a learning rate of 5e-5 with l
|
|
52 |
|
53 |
## Usage
|
54 |
|
|
|
|
|
55 |
```bash
|
56 |
-
pip install colpali-engine
|
57 |
```
|
58 |
|
|
|
59 |
|
60 |
```python
|
|
|
|
|
61 |
import torch
|
62 |
-
import typer
|
63 |
-
from torch.utils.data import DataLoader
|
64 |
-
from tqdm import tqdm
|
65 |
-
from transformers import AutoProcessor
|
66 |
from PIL import Image
|
67 |
|
68 |
-
from colpali_engine.models
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
# run inference - queries
|
103 |
-
dataloader = DataLoader(
|
104 |
-
queries,
|
105 |
-
batch_size=4,
|
106 |
-
shuffle=False,
|
107 |
-
collate_fn=lambda x: process_queries(processor, x, Image.new("RGB", (448, 448), (255, 255, 255))),
|
108 |
-
)
|
109 |
-
|
110 |
-
qs = []
|
111 |
-
for batch_query in dataloader:
|
112 |
-
with torch.no_grad():
|
113 |
-
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
|
114 |
-
embeddings_query = model(**batch_query)
|
115 |
-
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
116 |
-
|
117 |
-
# run evaluation
|
118 |
-
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
|
119 |
-
scores = retriever_evaluator.evaluate(qs, ds)
|
120 |
-
print(scores.argmax(axis=1))
|
121 |
-
|
122 |
-
|
123 |
-
if __name__ == "__main__":
|
124 |
-
typer.run(main)
|
125 |
-
|
126 |
-
```
|
127 |
-
|
128 |
-
**Note:** If you need to further train ColPali from this adapter, you should run:
|
129 |
-
|
130 |
-
```python
|
131 |
-
lora_config = LoraConfig.from_pretrained("vidore/colpali-v1.1")
|
132 |
-
lora_config.inference_mode = False # force training mode for fine-tuning
|
133 |
-
|
134 |
-
model = get_peft_model(model, lora_config)
|
135 |
-
|
136 |
-
print("after")
|
137 |
-
model.print_trainable_parameters()
|
138 |
```
|
139 |
|
140 |
## Limitations
|
|
|
18 |
|
19 |
## Version specificity
|
20 |
|
21 |
+
This version is trained with `colpali-engine==0.2.0` but can be loaded for any version `>=0.2.0`.
|
22 |
|
23 |
Compared to `colpali`, this version is trained with right padding for queries to fix unwanted tokens in the query encoding.
|
24 |
It also stems from the fixed `vidore/colpaligemma-3b-pt-448-base` to guarantee deterministic projection layer initialization.
|
|
|
52 |
|
53 |
## Usage
|
54 |
|
55 |
+
Install [`colpali-engine`](https://github.com/illuin-tech/colpali):
|
56 |
+
|
57 |
```bash
|
58 |
+
pip install colpali-engine>=0.3.0,<0.4.0
|
59 |
```
|
60 |
|
61 |
+
Then run the following code:
|
62 |
|
63 |
```python
|
64 |
+
from typing import cast
|
65 |
+
|
66 |
import torch
|
|
|
|
|
|
|
|
|
67 |
from PIL import Image
|
68 |
|
69 |
+
from colpali_engine.models import ColPali, ColPaliProcessor
|
70 |
+
|
71 |
+
model = cast(
|
72 |
+
ColPali,
|
73 |
+
ColPali.from_pretrained(
|
74 |
+
"vidore/colpali-v1.2",
|
75 |
+
torch_dtype=torch.bfloat16,
|
76 |
+
device_map="cuda:0", # or "mps" if on Apple Silicon
|
77 |
+
),
|
78 |
+
)
|
79 |
+
|
80 |
+
processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained("google/paligemma-3b-mix-448"))
|
81 |
+
|
82 |
+
# Your inputs
|
83 |
+
images = [
|
84 |
+
Image.new("RGB", (32, 32), color="white"),
|
85 |
+
Image.new("RGB", (16, 16), color="black"),
|
86 |
+
]
|
87 |
+
queries = [
|
88 |
+
"Is attention really all you need?",
|
89 |
+
"Are Benjamin, Antoine, Merve, and Jo best friends?",
|
90 |
+
]
|
91 |
+
|
92 |
+
# Process the inputs
|
93 |
+
batch_images = processor.process_images(images).to(model.device)
|
94 |
+
batch_queries = processor.process_queries(queries).to(model.device)
|
95 |
+
|
96 |
+
# Forward pass
|
97 |
+
with torch.no_grad():
|
98 |
+
image_embeddings = model(**batch_images)
|
99 |
+
querry_embeddings = model(**batch_queries)
|
100 |
+
|
101 |
+
scores = processor.score_multi_vector(querry_embeddings, image_embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
```
|
103 |
|
104 |
## Limitations
|