File size: 2,454 Bytes
16cfed1
 
 
5242895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: other
---
# Hugging Face Model - Bengali Finetuned

This repository contains a Hugging Face model that has been fine-tuned on a Bengali dataset. The model uses the `peft` library for generating responses.

## Usage

To use the model, first import the necessary libraries:

```python
from peft import PeftModel
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
```

Next, load the tokenizer and model:

```python
tokenizer = LlamaTokenizer.from_pretrained("yahma/llama-7b-hf")
model = LlamaForCausalLM.from_pretrained(
    "yahma/llama-7b-hf",
    load_in_8bit=True,
    device_map="auto",
)
```

Then, load the `PeftModel` with the specified pre-trained model and path to the peft model:

```python
model = PeftModel.from_pretrained(model, "./bengali-dolly-alpaca-lora-7b")
```

Next, define a function to generate a prompt:

```python
def generate_prompt(instruction, input=None):
    if input:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:"""
```

Finally, define a function to evaluate the model:

```python
generation_config = GenerationConfig(
    temperature=0.1,
    top_p=0.75,
    num_beams=4,
)

def evaluate(model, instruction, input=None):
    prompt = generate_prompt(instruction, input)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].cuda()
    generation_output = model.generate(
        input_ids=input_ids,
        generation_config=generation_config,
        return_dict_in_generate=True,
        output_scores=True,
        max_new_tokens=256
    )
    for s in generation_output.sequences:
        output = tokenizer.decode(s)
        print("Response:", output.split("### Response:")[1].strip())

instruct =input("Instruction: ")
evaluate(model, instruct)
```

To generate a response, simply run the `evaluate` function with an instruction and optional input:

```python
instruct = "Write a response that appropriately completes the request."
input = "This is a sample input."
evaluate(model, instruct, input)
```

This will output a response that completes the request.