Mistral-7B-Instruct-v0.2-GPTQ_finetune_s1000
This model is a fine-tuned version of TheBloke/Mistral-7B-Instruct-v0.2-GPTQ on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6456
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.2303 | 0.9829 | 43 | 0.8563 |
0.6964 | 1.9886 | 87 | 0.7045 |
0.6032 | 2.9943 | 131 | 0.6661 |
0.558 | 4.0 | 175 | 0.6472 |
0.5376 | 4.9829 | 218 | 0.6400 |
0.4962 | 5.9886 | 262 | 0.6360 |
0.4754 | 6.9943 | 306 | 0.6359 |
0.4593 | 8.0 | 350 | 0.6393 |
0.456 | 8.9829 | 393 | 0.6430 |
0.4305 | 9.8286 | 430 | 0.6456 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for vjvk/Mistral-7B-Instruct-v0.2-GPTQ_finetune_s1000
Base model
mistralai/Mistral-7B-Instruct-v0.2
Quantized
TheBloke/Mistral-7B-Instruct-v0.2-GPTQ