File size: 16,350 Bytes
53e52b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
{
"_name_or_path": "bert-base-uncased",
"architectures": [
"BertForSequenceClassification"
],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"id2label": {
"0": "secrecy rate",
"1": "markov geographic model",
"2": "graph convolution networks",
"3": "convolutional neural network",
"4": "computed tomography",
"5": "betweenness centrality",
"6": "forward error correction",
"7": "fusion center",
"8": "random vaccination",
"9": "adversarial risk analysis",
"10": "nash equilibrium",
"11": "maximum likelihood",
"12": "synthetic aperture radar",
"13": "sound pressure level",
"14": "support vector machine",
"15": "high performance computing",
"16": "access point",
"17": "downlink",
"18": "strictly piecewise",
"19": "atomic , independent , declarative , and absolute",
"20": "shortest dependency path",
"21": "multi - layer same - resolution compressed",
"22": "marginal contribution",
"23": "spectral angle distance",
"24": "information retrieval",
"25": "resource description framework",
"26": "atomic function computation",
"27": "part of speech",
"28": "long term evolution",
"29": "mean squared error",
"30": "permutation invariant training",
"31": "minimum generation error",
"32": "alternating least squares",
"33": "reinforcement learning",
"34": "machine learning",
"35": "recurrent neural network",
"36": "recurrent weighted average",
"37": "question answering",
"38": "multiple parallel instances",
"39": "gaussian process",
"40": "base station",
"41": "receiver operating characteristic",
"42": "threshold algorithm",
"43": "click through rates",
"44": "virtual machine",
"45": "test case prioritization",
"46": "neural network",
"47": "belief propagation",
"48": "contention adaptions",
"49": "dynamic induction control",
"50": "information embedding cost",
"51": "lifelong metric learning",
"52": "linear programming",
"53": "multiple description coding",
"54": "latent dirichlet allocation",
"55": "collaborative filtering",
"56": "medium access control",
"57": "description logics",
"58": "radio frequency",
"59": "adaptive radix tree",
"60": "integer linear programming",
"61": "minimum risk training",
"62": "constructive interference",
"63": "line of sight",
"64": "deep belief network",
"65": "average precision",
"66": "dropped pronoun",
"67": "rate distortion function",
"68": "intellectual property",
"69": "geometric programming",
"70": "gaussian mixture model",
"71": "language model",
"72": "adversarially robust distillation",
"73": "controlled natural language",
"74": "federated learning",
"75": "augmented reality",
"76": "matrix factorization",
"77": "principal component analysis",
"78": "node classification",
"79": "smart object",
"80": "poisson point process",
"81": "attention network",
"82": "constrained least squares",
"83": "global positioning system",
"84": "prepositional phrase",
"85": "artificial neural network",
"86": "directed belief net",
"87": "false positive rate",
"88": "latent semantic analysis",
"89": "artificial intelligence",
"90": "model predictive control",
"91": "genetic algorithm",
"92": "access part'",
"93": "sensing application recently",
"94": "mutual information",
"95": "universal dependencies",
"96": "secrecy outage probability",
"97": "statistical compressed sensing",
"98": "information bottleneck",
"99": "ergodic sum capacity",
"100": "image signal processor",
"101": "particle swarm optimization",
"102": "differential rectifier",
"103": "technical debt",
"104": "deep learning",
"105": "hybrid monte carlo",
"106": "ordinary differential equation",
"107": "scalar multiplication",
"108": "inductive logic programming",
"109": "simulated annealing",
"110": "entity set expansion",
"111": "autism spectrum disorders",
"112": "artificial bee colony",
"113": "property graph",
"114": "centralized solution",
"115": "social status",
"116": "taint dependency sequences",
"117": "expectation maximization",
"118": "machine translation",
"119": "dynamic vision sensor",
"120": "automatic speech recognition",
"121": "user equipment",
"122": "random neural networks",
"123": "mean absolute error",
"124": "bayesian network",
"125": "singular value decomposition",
"126": "multimedia event detection",
"127": "median recovery error",
"128": "nearest neighbor",
"129": "friendly jamming",
"130": "formal methods",
"131": "intraclass correlation coefficient",
"132": "central cloud",
"133": "cumulative activation",
"134": "mitral valve",
"135": "discriminative correlation filter",
"136": "transformation error",
"137": "relation extraction",
"138": "linear discriminant analysis",
"139": "integrated circuit",
"140": "stochastic block model",
"141": "information extraction",
"142": "socially assistive robots",
"143": "hierarchical attention network",
"144": "deep reinforcement learning",
"145": "logistic regression",
"146": "message passing interface",
"147": "bug reports",
"148": "alzheimer 's disease",
"149": "data science and analytics",
"150": "automatic differentiation",
"151": "conditional random field",
"152": "false negatives",
"153": "sequential monte carlo",
"154": "basic question",
"155": "physical access",
"156": "point multiplication",
"157": "leicester scientific corpus",
"158": "transformation encoder",
"159": "deep convolutional neural network",
"160": "thompson sampling",
"161": "orthogonal least square",
"162": "acquaintance vaccination",
"163": "rate - selective",
"164": "dynamic assignment ratio",
"165": "multiple description",
"166": "million song dataset",
"167": "machine type communications",
"168": "self attention network",
"169": "term frequency",
"170": "portable document format",
"171": "parameter server",
"172": "physical machines",
"173": "exponential moving average",
"174": "matrix pair beamformer",
"175": "optimal transport",
"176": "finite element method",
"177": "differential evolution",
"178": "product - based neural network",
"179": "mean average conceptual similarity",
"180": "power splitting",
"181": "parkinson 's disease",
"182": "new persian",
"183": "artifact disentanglement network",
"184": "statistical machine translation",
"185": "manifold geometry matching",
"186": "batch normalization",
"187": "rank residual constraint",
"188": "oblivious transfer",
"189": "positive pointwise mutual information",
"190": "triad significance profile",
"191": "reverse classification accuracy",
"192": "fully connected",
"193": "corresponding arcs",
"194": "maximum a posteriori",
"195": "false positive",
"196": "certain natural language",
"197": "strategic dependency",
"198": "strictly local",
"199": "internet protocol",
"200": "foveal tilt effects",
"201": "dynamic cluster",
"202": "domain name system",
"203": "mean average precision",
"204": "semantic role labeling",
"205": "recurrent convolution",
"206": "optical character recognition",
"207": "charging current",
"208": "low resolution",
"209": "power system operations",
"210": "compressive sensing",
"211": "optimal power flow",
"212": "deep context prediction",
"213": "secondary users",
"214": "o - d demand estimation",
"215": "fully convolutional neural network",
"216": "maximal ratio combining",
"217": "quantile random forest",
"218": "adaptive threshold",
"219": "situation entity",
"220": "relay station",
"221": "discrete choice models",
"222": "random forest",
"223": "left ventricle",
"224": "artificial noise"
},
"initializer_range": 0.02,
"intermediate_size": 3072,
"label2id": {
"access part'": 92,
"access point": 16,
"acquaintance vaccination": 162,
"adaptive radix tree": 59,
"adaptive threshold": 218,
"adversarial risk analysis": 9,
"adversarially robust distillation": 72,
"alternating least squares": 32,
"alzheimer 's disease": 148,
"artifact disentanglement network": 183,
"artificial bee colony": 112,
"artificial intelligence": 89,
"artificial neural network": 85,
"artificial noise": 224,
"atomic , independent , declarative , and absolute": 19,
"atomic function computation": 26,
"attention network": 81,
"augmented reality": 75,
"autism spectrum disorders": 111,
"automatic differentiation": 150,
"automatic speech recognition": 120,
"average precision": 65,
"base station": 40,
"basic question": 154,
"batch normalization": 186,
"bayesian network": 124,
"belief propagation": 47,
"betweenness centrality": 5,
"bug reports": 147,
"central cloud": 132,
"centralized solution": 114,
"certain natural language": 196,
"charging current": 207,
"click through rates": 43,
"collaborative filtering": 55,
"compressive sensing": 210,
"computed tomography": 4,
"conditional random field": 151,
"constrained least squares": 82,
"constructive interference": 62,
"contention adaptions": 48,
"controlled natural language": 73,
"convolutional neural network": 3,
"corresponding arcs": 193,
"cumulative activation": 133,
"data science and analytics": 149,
"deep belief network": 64,
"deep context prediction": 212,
"deep convolutional neural network": 159,
"deep learning": 104,
"deep reinforcement learning": 144,
"description logics": 57,
"differential evolution": 177,
"differential rectifier": 102,
"directed belief net": 86,
"discrete choice models": 221,
"discriminative correlation filter": 135,
"domain name system": 202,
"downlink": 17,
"dropped pronoun": 66,
"dynamic assignment ratio": 164,
"dynamic cluster": 201,
"dynamic induction control": 49,
"dynamic vision sensor": 119,
"entity set expansion": 110,
"ergodic sum capacity": 99,
"expectation maximization": 117,
"exponential moving average": 173,
"false negatives": 152,
"false positive": 195,
"false positive rate": 87,
"federated learning": 74,
"finite element method": 176,
"formal methods": 130,
"forward error correction": 6,
"foveal tilt effects": 200,
"friendly jamming": 129,
"fully connected": 192,
"fully convolutional neural network": 215,
"fusion center": 7,
"gaussian mixture model": 70,
"gaussian process": 39,
"genetic algorithm": 91,
"geometric programming": 69,
"global positioning system": 83,
"graph convolution networks": 2,
"hierarchical attention network": 143,
"high performance computing": 15,
"hybrid monte carlo": 105,
"image signal processor": 100,
"inductive logic programming": 108,
"information bottleneck": 98,
"information embedding cost": 50,
"information extraction": 141,
"information retrieval": 24,
"integer linear programming": 60,
"integrated circuit": 139,
"intellectual property": 68,
"internet protocol": 199,
"intraclass correlation coefficient": 131,
"language model": 71,
"latent dirichlet allocation": 54,
"latent semantic analysis": 88,
"left ventricle": 223,
"leicester scientific corpus": 157,
"lifelong metric learning": 51,
"line of sight": 63,
"linear discriminant analysis": 138,
"linear programming": 52,
"logistic regression": 145,
"long term evolution": 28,
"low resolution": 208,
"machine learning": 34,
"machine translation": 118,
"machine type communications": 167,
"manifold geometry matching": 185,
"marginal contribution": 22,
"markov geographic model": 1,
"matrix factorization": 76,
"matrix pair beamformer": 174,
"maximal ratio combining": 216,
"maximum a posteriori": 194,
"maximum likelihood": 11,
"mean absolute error": 123,
"mean average conceptual similarity": 179,
"mean average precision": 203,
"mean squared error": 29,
"median recovery error": 127,
"medium access control": 56,
"message passing interface": 146,
"million song dataset": 166,
"minimum generation error": 31,
"minimum risk training": 61,
"mitral valve": 134,
"model predictive control": 90,
"multi - layer same - resolution compressed": 21,
"multimedia event detection": 126,
"multiple description": 165,
"multiple description coding": 53,
"multiple parallel instances": 38,
"mutual information": 94,
"nash equilibrium": 10,
"nearest neighbor": 128,
"neural network": 46,
"new persian": 182,
"node classification": 78,
"o - d demand estimation": 214,
"oblivious transfer": 188,
"optical character recognition": 206,
"optimal power flow": 211,
"optimal transport": 175,
"ordinary differential equation": 106,
"orthogonal least square": 161,
"parameter server": 171,
"parkinson 's disease": 181,
"part of speech": 27,
"particle swarm optimization": 101,
"permutation invariant training": 30,
"physical access": 155,
"physical machines": 172,
"point multiplication": 156,
"poisson point process": 80,
"portable document format": 170,
"positive pointwise mutual information": 189,
"power splitting": 180,
"power system operations": 209,
"prepositional phrase": 84,
"principal component analysis": 77,
"product - based neural network": 178,
"property graph": 113,
"quantile random forest": 217,
"question answering": 37,
"radio frequency": 58,
"random forest": 222,
"random neural networks": 122,
"random vaccination": 8,
"rank residual constraint": 187,
"rate - selective": 163,
"rate distortion function": 67,
"receiver operating characteristic": 41,
"recurrent convolution": 205,
"recurrent neural network": 35,
"recurrent weighted average": 36,
"reinforcement learning": 33,
"relation extraction": 137,
"relay station": 220,
"resource description framework": 25,
"reverse classification accuracy": 191,
"scalar multiplication": 107,
"secondary users": 213,
"secrecy outage probability": 96,
"secrecy rate": 0,
"self attention network": 168,
"semantic role labeling": 204,
"sensing application recently": 93,
"sequential monte carlo": 153,
"shortest dependency path": 20,
"simulated annealing": 109,
"singular value decomposition": 125,
"situation entity": 219,
"smart object": 79,
"social status": 115,
"socially assistive robots": 142,
"sound pressure level": 13,
"spectral angle distance": 23,
"statistical compressed sensing": 97,
"statistical machine translation": 184,
"stochastic block model": 140,
"strategic dependency": 197,
"strictly local": 198,
"strictly piecewise": 18,
"support vector machine": 14,
"synthetic aperture radar": 12,
"taint dependency sequences": 116,
"technical debt": 103,
"term frequency": 169,
"test case prioritization": 45,
"thompson sampling": 160,
"threshold algorithm": 42,
"transformation encoder": 158,
"transformation error": 136,
"triad significance profile": 190,
"universal dependencies": 95,
"user equipment": 121,
"virtual machine": 44
},
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"transformers_version": "4.34.1",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 30522
}
|