|
{ |
|
"_name_or_path": "bert-base-uncased", |
|
"architectures": [ |
|
"BertForSequenceClassification" |
|
], |
|
"attention_probs_dropout_prob": 0.1, |
|
"classifier_dropout": null, |
|
"gradient_checkpointing": false, |
|
"hidden_act": "gelu", |
|
"hidden_dropout_prob": 0.1, |
|
"hidden_size": 768, |
|
"id2label": { |
|
"0": "secrecy rate", |
|
"1": "markov geographic model", |
|
"2": "graph convolution networks", |
|
"3": "convolutional neural network", |
|
"4": "computed tomography", |
|
"5": "betweenness centrality", |
|
"6": "forward error correction", |
|
"7": "fusion center", |
|
"8": "random vaccination", |
|
"9": "adversarial risk analysis", |
|
"10": "nash equilibrium", |
|
"11": "maximum likelihood", |
|
"12": "synthetic aperture radar", |
|
"13": "sound pressure level", |
|
"14": "support vector machine", |
|
"15": "high performance computing", |
|
"16": "access point", |
|
"17": "downlink", |
|
"18": "strictly piecewise", |
|
"19": "atomic , independent , declarative , and absolute", |
|
"20": "shortest dependency path", |
|
"21": "multi - layer same - resolution compressed", |
|
"22": "marginal contribution", |
|
"23": "spectral angle distance", |
|
"24": "information retrieval", |
|
"25": "resource description framework", |
|
"26": "atomic function computation", |
|
"27": "part of speech", |
|
"28": "long term evolution", |
|
"29": "mean squared error", |
|
"30": "permutation invariant training", |
|
"31": "minimum generation error", |
|
"32": "alternating least squares", |
|
"33": "reinforcement learning", |
|
"34": "machine learning", |
|
"35": "recurrent neural network", |
|
"36": "recurrent weighted average", |
|
"37": "question answering", |
|
"38": "multiple parallel instances", |
|
"39": "gaussian process", |
|
"40": "base station", |
|
"41": "receiver operating characteristic", |
|
"42": "threshold algorithm", |
|
"43": "click through rates", |
|
"44": "virtual machine", |
|
"45": "test case prioritization", |
|
"46": "neural network", |
|
"47": "belief propagation", |
|
"48": "contention adaptions", |
|
"49": "dynamic induction control", |
|
"50": "information embedding cost", |
|
"51": "lifelong metric learning", |
|
"52": "linear programming", |
|
"53": "multiple description coding", |
|
"54": "latent dirichlet allocation", |
|
"55": "collaborative filtering", |
|
"56": "medium access control", |
|
"57": "description logics", |
|
"58": "radio frequency", |
|
"59": "adaptive radix tree", |
|
"60": "integer linear programming", |
|
"61": "minimum risk training", |
|
"62": "constructive interference", |
|
"63": "line of sight", |
|
"64": "deep belief network", |
|
"65": "average precision", |
|
"66": "dropped pronoun", |
|
"67": "rate distortion function", |
|
"68": "intellectual property", |
|
"69": "geometric programming", |
|
"70": "gaussian mixture model", |
|
"71": "language model", |
|
"72": "adversarially robust distillation", |
|
"73": "controlled natural language", |
|
"74": "federated learning", |
|
"75": "augmented reality", |
|
"76": "matrix factorization", |
|
"77": "principal component analysis", |
|
"78": "node classification", |
|
"79": "smart object", |
|
"80": "poisson point process", |
|
"81": "attention network", |
|
"82": "constrained least squares", |
|
"83": "global positioning system", |
|
"84": "prepositional phrase", |
|
"85": "artificial neural network", |
|
"86": "directed belief net", |
|
"87": "false positive rate", |
|
"88": "latent semantic analysis", |
|
"89": "artificial intelligence", |
|
"90": "model predictive control", |
|
"91": "genetic algorithm", |
|
"92": "access part'", |
|
"93": "sensing application recently", |
|
"94": "mutual information", |
|
"95": "universal dependencies", |
|
"96": "secrecy outage probability", |
|
"97": "statistical compressed sensing", |
|
"98": "information bottleneck", |
|
"99": "ergodic sum capacity", |
|
"100": "image signal processor", |
|
"101": "particle swarm optimization", |
|
"102": "differential rectifier", |
|
"103": "technical debt", |
|
"104": "deep learning", |
|
"105": "hybrid monte carlo", |
|
"106": "ordinary differential equation", |
|
"107": "scalar multiplication", |
|
"108": "inductive logic programming", |
|
"109": "simulated annealing", |
|
"110": "entity set expansion", |
|
"111": "autism spectrum disorders", |
|
"112": "artificial bee colony", |
|
"113": "property graph", |
|
"114": "centralized solution", |
|
"115": "social status", |
|
"116": "taint dependency sequences", |
|
"117": "expectation maximization", |
|
"118": "machine translation", |
|
"119": "dynamic vision sensor", |
|
"120": "automatic speech recognition", |
|
"121": "user equipment", |
|
"122": "random neural networks", |
|
"123": "mean absolute error", |
|
"124": "bayesian network", |
|
"125": "singular value decomposition", |
|
"126": "multimedia event detection", |
|
"127": "median recovery error", |
|
"128": "nearest neighbor", |
|
"129": "friendly jamming", |
|
"130": "formal methods", |
|
"131": "intraclass correlation coefficient", |
|
"132": "central cloud", |
|
"133": "cumulative activation", |
|
"134": "mitral valve", |
|
"135": "discriminative correlation filter", |
|
"136": "transformation error", |
|
"137": "relation extraction", |
|
"138": "linear discriminant analysis", |
|
"139": "integrated circuit", |
|
"140": "stochastic block model", |
|
"141": "information extraction", |
|
"142": "socially assistive robots", |
|
"143": "hierarchical attention network", |
|
"144": "deep reinforcement learning", |
|
"145": "logistic regression", |
|
"146": "message passing interface", |
|
"147": "bug reports", |
|
"148": "alzheimer 's disease", |
|
"149": "data science and analytics", |
|
"150": "automatic differentiation", |
|
"151": "conditional random field", |
|
"152": "false negatives", |
|
"153": "sequential monte carlo", |
|
"154": "basic question", |
|
"155": "physical access", |
|
"156": "point multiplication", |
|
"157": "leicester scientific corpus", |
|
"158": "transformation encoder", |
|
"159": "deep convolutional neural network", |
|
"160": "thompson sampling", |
|
"161": "orthogonal least square", |
|
"162": "acquaintance vaccination", |
|
"163": "rate - selective", |
|
"164": "dynamic assignment ratio", |
|
"165": "multiple description", |
|
"166": "million song dataset", |
|
"167": "machine type communications", |
|
"168": "self attention network", |
|
"169": "term frequency", |
|
"170": "portable document format", |
|
"171": "parameter server", |
|
"172": "physical machines", |
|
"173": "exponential moving average", |
|
"174": "matrix pair beamformer", |
|
"175": "optimal transport", |
|
"176": "finite element method", |
|
"177": "differential evolution", |
|
"178": "product - based neural network", |
|
"179": "mean average conceptual similarity", |
|
"180": "power splitting", |
|
"181": "parkinson 's disease", |
|
"182": "new persian", |
|
"183": "artifact disentanglement network", |
|
"184": "statistical machine translation", |
|
"185": "manifold geometry matching", |
|
"186": "batch normalization", |
|
"187": "rank residual constraint", |
|
"188": "oblivious transfer", |
|
"189": "positive pointwise mutual information", |
|
"190": "triad significance profile", |
|
"191": "reverse classification accuracy", |
|
"192": "fully connected", |
|
"193": "corresponding arcs", |
|
"194": "maximum a posteriori", |
|
"195": "false positive", |
|
"196": "certain natural language", |
|
"197": "strategic dependency", |
|
"198": "strictly local", |
|
"199": "internet protocol", |
|
"200": "foveal tilt effects", |
|
"201": "dynamic cluster", |
|
"202": "domain name system", |
|
"203": "mean average precision", |
|
"204": "semantic role labeling", |
|
"205": "recurrent convolution", |
|
"206": "optical character recognition", |
|
"207": "charging current", |
|
"208": "low resolution", |
|
"209": "power system operations", |
|
"210": "compressive sensing", |
|
"211": "optimal power flow", |
|
"212": "deep context prediction", |
|
"213": "secondary users", |
|
"214": "o - d demand estimation", |
|
"215": "fully convolutional neural network", |
|
"216": "maximal ratio combining", |
|
"217": "quantile random forest", |
|
"218": "adaptive threshold", |
|
"219": "situation entity", |
|
"220": "relay station", |
|
"221": "discrete choice models", |
|
"222": "random forest", |
|
"223": "left ventricle", |
|
"224": "artificial noise" |
|
}, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 3072, |
|
"label2id": { |
|
"access part'": 92, |
|
"access point": 16, |
|
"acquaintance vaccination": 162, |
|
"adaptive radix tree": 59, |
|
"adaptive threshold": 218, |
|
"adversarial risk analysis": 9, |
|
"adversarially robust distillation": 72, |
|
"alternating least squares": 32, |
|
"alzheimer 's disease": 148, |
|
"artifact disentanglement network": 183, |
|
"artificial bee colony": 112, |
|
"artificial intelligence": 89, |
|
"artificial neural network": 85, |
|
"artificial noise": 224, |
|
"atomic , independent , declarative , and absolute": 19, |
|
"atomic function computation": 26, |
|
"attention network": 81, |
|
"augmented reality": 75, |
|
"autism spectrum disorders": 111, |
|
"automatic differentiation": 150, |
|
"automatic speech recognition": 120, |
|
"average precision": 65, |
|
"base station": 40, |
|
"basic question": 154, |
|
"batch normalization": 186, |
|
"bayesian network": 124, |
|
"belief propagation": 47, |
|
"betweenness centrality": 5, |
|
"bug reports": 147, |
|
"central cloud": 132, |
|
"centralized solution": 114, |
|
"certain natural language": 196, |
|
"charging current": 207, |
|
"click through rates": 43, |
|
"collaborative filtering": 55, |
|
"compressive sensing": 210, |
|
"computed tomography": 4, |
|
"conditional random field": 151, |
|
"constrained least squares": 82, |
|
"constructive interference": 62, |
|
"contention adaptions": 48, |
|
"controlled natural language": 73, |
|
"convolutional neural network": 3, |
|
"corresponding arcs": 193, |
|
"cumulative activation": 133, |
|
"data science and analytics": 149, |
|
"deep belief network": 64, |
|
"deep context prediction": 212, |
|
"deep convolutional neural network": 159, |
|
"deep learning": 104, |
|
"deep reinforcement learning": 144, |
|
"description logics": 57, |
|
"differential evolution": 177, |
|
"differential rectifier": 102, |
|
"directed belief net": 86, |
|
"discrete choice models": 221, |
|
"discriminative correlation filter": 135, |
|
"domain name system": 202, |
|
"downlink": 17, |
|
"dropped pronoun": 66, |
|
"dynamic assignment ratio": 164, |
|
"dynamic cluster": 201, |
|
"dynamic induction control": 49, |
|
"dynamic vision sensor": 119, |
|
"entity set expansion": 110, |
|
"ergodic sum capacity": 99, |
|
"expectation maximization": 117, |
|
"exponential moving average": 173, |
|
"false negatives": 152, |
|
"false positive": 195, |
|
"false positive rate": 87, |
|
"federated learning": 74, |
|
"finite element method": 176, |
|
"formal methods": 130, |
|
"forward error correction": 6, |
|
"foveal tilt effects": 200, |
|
"friendly jamming": 129, |
|
"fully connected": 192, |
|
"fully convolutional neural network": 215, |
|
"fusion center": 7, |
|
"gaussian mixture model": 70, |
|
"gaussian process": 39, |
|
"genetic algorithm": 91, |
|
"geometric programming": 69, |
|
"global positioning system": 83, |
|
"graph convolution networks": 2, |
|
"hierarchical attention network": 143, |
|
"high performance computing": 15, |
|
"hybrid monte carlo": 105, |
|
"image signal processor": 100, |
|
"inductive logic programming": 108, |
|
"information bottleneck": 98, |
|
"information embedding cost": 50, |
|
"information extraction": 141, |
|
"information retrieval": 24, |
|
"integer linear programming": 60, |
|
"integrated circuit": 139, |
|
"intellectual property": 68, |
|
"internet protocol": 199, |
|
"intraclass correlation coefficient": 131, |
|
"language model": 71, |
|
"latent dirichlet allocation": 54, |
|
"latent semantic analysis": 88, |
|
"left ventricle": 223, |
|
"leicester scientific corpus": 157, |
|
"lifelong metric learning": 51, |
|
"line of sight": 63, |
|
"linear discriminant analysis": 138, |
|
"linear programming": 52, |
|
"logistic regression": 145, |
|
"long term evolution": 28, |
|
"low resolution": 208, |
|
"machine learning": 34, |
|
"machine translation": 118, |
|
"machine type communications": 167, |
|
"manifold geometry matching": 185, |
|
"marginal contribution": 22, |
|
"markov geographic model": 1, |
|
"matrix factorization": 76, |
|
"matrix pair beamformer": 174, |
|
"maximal ratio combining": 216, |
|
"maximum a posteriori": 194, |
|
"maximum likelihood": 11, |
|
"mean absolute error": 123, |
|
"mean average conceptual similarity": 179, |
|
"mean average precision": 203, |
|
"mean squared error": 29, |
|
"median recovery error": 127, |
|
"medium access control": 56, |
|
"message passing interface": 146, |
|
"million song dataset": 166, |
|
"minimum generation error": 31, |
|
"minimum risk training": 61, |
|
"mitral valve": 134, |
|
"model predictive control": 90, |
|
"multi - layer same - resolution compressed": 21, |
|
"multimedia event detection": 126, |
|
"multiple description": 165, |
|
"multiple description coding": 53, |
|
"multiple parallel instances": 38, |
|
"mutual information": 94, |
|
"nash equilibrium": 10, |
|
"nearest neighbor": 128, |
|
"neural network": 46, |
|
"new persian": 182, |
|
"node classification": 78, |
|
"o - d demand estimation": 214, |
|
"oblivious transfer": 188, |
|
"optical character recognition": 206, |
|
"optimal power flow": 211, |
|
"optimal transport": 175, |
|
"ordinary differential equation": 106, |
|
"orthogonal least square": 161, |
|
"parameter server": 171, |
|
"parkinson 's disease": 181, |
|
"part of speech": 27, |
|
"particle swarm optimization": 101, |
|
"permutation invariant training": 30, |
|
"physical access": 155, |
|
"physical machines": 172, |
|
"point multiplication": 156, |
|
"poisson point process": 80, |
|
"portable document format": 170, |
|
"positive pointwise mutual information": 189, |
|
"power splitting": 180, |
|
"power system operations": 209, |
|
"prepositional phrase": 84, |
|
"principal component analysis": 77, |
|
"product - based neural network": 178, |
|
"property graph": 113, |
|
"quantile random forest": 217, |
|
"question answering": 37, |
|
"radio frequency": 58, |
|
"random forest": 222, |
|
"random neural networks": 122, |
|
"random vaccination": 8, |
|
"rank residual constraint": 187, |
|
"rate - selective": 163, |
|
"rate distortion function": 67, |
|
"receiver operating characteristic": 41, |
|
"recurrent convolution": 205, |
|
"recurrent neural network": 35, |
|
"recurrent weighted average": 36, |
|
"reinforcement learning": 33, |
|
"relation extraction": 137, |
|
"relay station": 220, |
|
"resource description framework": 25, |
|
"reverse classification accuracy": 191, |
|
"scalar multiplication": 107, |
|
"secondary users": 213, |
|
"secrecy outage probability": 96, |
|
"secrecy rate": 0, |
|
"self attention network": 168, |
|
"semantic role labeling": 204, |
|
"sensing application recently": 93, |
|
"sequential monte carlo": 153, |
|
"shortest dependency path": 20, |
|
"simulated annealing": 109, |
|
"singular value decomposition": 125, |
|
"situation entity": 219, |
|
"smart object": 79, |
|
"social status": 115, |
|
"socially assistive robots": 142, |
|
"sound pressure level": 13, |
|
"spectral angle distance": 23, |
|
"statistical compressed sensing": 97, |
|
"statistical machine translation": 184, |
|
"stochastic block model": 140, |
|
"strategic dependency": 197, |
|
"strictly local": 198, |
|
"strictly piecewise": 18, |
|
"support vector machine": 14, |
|
"synthetic aperture radar": 12, |
|
"taint dependency sequences": 116, |
|
"technical debt": 103, |
|
"term frequency": 169, |
|
"test case prioritization": 45, |
|
"thompson sampling": 160, |
|
"threshold algorithm": 42, |
|
"transformation encoder": 158, |
|
"transformation error": 136, |
|
"triad significance profile": 190, |
|
"universal dependencies": 95, |
|
"user equipment": 121, |
|
"virtual machine": 44 |
|
}, |
|
"layer_norm_eps": 1e-12, |
|
"max_position_embeddings": 512, |
|
"model_type": "bert", |
|
"num_attention_heads": 12, |
|
"num_hidden_layers": 12, |
|
"pad_token_id": 0, |
|
"position_embedding_type": "absolute", |
|
"transformers_version": "4.34.1", |
|
"type_vocab_size": 2, |
|
"use_cache": true, |
|
"vocab_size": 30522 |
|
} |
|
|