vnktrmnb's picture
Training in progress epoch 2
175b9da
|
raw
history blame
2.61 kB
---
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_keras_callback
model-index:
- name: vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA_AUQ
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA_AUQ
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3207
- Train End Logits Accuracy: 0.8945
- Train Start Logits Accuracy: 0.9240
- Validation Loss: 0.4883
- Validation End Logits Accuracy: 0.8621
- Validation Start Logits Accuracy: 0.9124
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2439, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 1.2099 | 0.6849 | 0.7242 | 0.5171 | 0.8454 | 0.8930 | 0 |
| 0.5374 | 0.8328 | 0.8737 | 0.4915 | 0.8570 | 0.8943 | 1 |
| 0.3207 | 0.8945 | 0.9240 | 0.4883 | 0.8621 | 0.9124 | 2 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3