convnext-base-15ep / README.md
vuongnhathien's picture
End of training
08158b1 verified
metadata
license: apache-2.0
base_model: facebook/convnextv2-base-22k-384
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: convnext-base-15ep
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9448412698412698

convnext-base-15ep

This model is a fine-tuned version of facebook/convnextv2-base-22k-384 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2376
  • Accuracy: 0.9448

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6099 1.0 1099 0.3668 0.8934
0.5086 2.0 2198 0.2773 0.9276
0.386 3.0 3297 0.2587 0.9324
0.335 4.0 4396 0.2400 0.9348
0.3167 5.0 5495 0.2599 0.9340
0.2703 6.0 6594 0.2440 0.9419
0.2638 7.0 7693 0.2496 0.9408
0.1938 8.0 8792 0.2366 0.9431
0.1789 9.0 9891 0.2353 0.9487
0.1738 10.0 10990 0.2380 0.9499
0.1924 11.0 12089 0.2458 0.9463
0.1628 12.0 13188 0.2434 0.9491
0.1431 13.0 14287 0.2390 0.9499
0.1432 14.0 15386 0.2391 0.9503
0.1297 15.0 16485 0.2384 0.9499

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2