w11wo's picture
End of training
38c4bfb
---
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: indobert-base-uncased-reddit-indonesia-sarcastic
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# indobert-base-uncased-reddit-indonesia-sarcastic
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5000
- Accuracy: 0.7670
- F1: 0.5671
- Precision: 0.5295
- Recall: 0.6105
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.5121 | 1.0 | 309 | 0.4942 | 0.7378 | 0.4774 | 0.4761 | 0.4788 |
| 0.4513 | 2.0 | 618 | 0.4422 | 0.7952 | 0.4956 | 0.6455 | 0.4023 |
| 0.4078 | 3.0 | 927 | 0.4771 | 0.7980 | 0.4075 | 0.7656 | 0.2776 |
| 0.3686 | 4.0 | 1236 | 0.4755 | 0.8051 | 0.4898 | 0.7097 | 0.3739 |
| 0.3358 | 5.0 | 1545 | 0.4864 | 0.7753 | 0.5768 | 0.5455 | 0.6119 |
| 0.299 | 6.0 | 1854 | 0.5038 | 0.7633 | 0.5729 | 0.5221 | 0.6346 |
| 0.2602 | 7.0 | 2163 | 0.5242 | 0.7888 | 0.5387 | 0.5939 | 0.4929 |
| 0.2184 | 8.0 | 2472 | 0.6153 | 0.7817 | 0.5523 | 0.5672 | 0.5382 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0