|
--- |
|
license: mit |
|
base_model: indolem/indobert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: indobert-base-uncased-reddit-indonesia-sarcastic |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# indobert-base-uncased-reddit-indonesia-sarcastic |
|
|
|
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5000 |
|
- Accuracy: 0.7670 |
|
- F1: 0.5671 |
|
- Precision: 0.5295 |
|
- Recall: 0.6105 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 100.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.5121 | 1.0 | 309 | 0.4942 | 0.7378 | 0.4774 | 0.4761 | 0.4788 | |
|
| 0.4513 | 2.0 | 618 | 0.4422 | 0.7952 | 0.4956 | 0.6455 | 0.4023 | |
|
| 0.4078 | 3.0 | 927 | 0.4771 | 0.7980 | 0.4075 | 0.7656 | 0.2776 | |
|
| 0.3686 | 4.0 | 1236 | 0.4755 | 0.8051 | 0.4898 | 0.7097 | 0.3739 | |
|
| 0.3358 | 5.0 | 1545 | 0.4864 | 0.7753 | 0.5768 | 0.5455 | 0.6119 | |
|
| 0.299 | 6.0 | 1854 | 0.5038 | 0.7633 | 0.5729 | 0.5221 | 0.6346 | |
|
| 0.2602 | 7.0 | 2163 | 0.5242 | 0.7888 | 0.5387 | 0.5939 | 0.4929 | |
|
| 0.2184 | 8.0 | 2472 | 0.6153 | 0.7817 | 0.5523 | 0.5672 | 0.5382 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|