w11wo's picture
Update README.md
5067796 verified
---
license: mit
base_model: flax-community/indonesian-roberta-base
tags:
- generated_from_trainer
datasets:
- indonlu
language:
- ind
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: indonesian-roberta-base-posp-tagger
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: indonlu
type: indonlu
config: posp
split: test
args: posp
metrics:
- name: Precision
type: precision
value: 0.9625100240577386
- name: Recall
type: recall
value: 0.9625100240577386
- name: F1
type: f1
value: 0.9625100240577386
- name: Accuracy
type: accuracy
value: 0.9625100240577386
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# indonesian-roberta-base-posp-tagger
This model is a fine-tuned version of [flax-community/indonesian-roberta-base](https://huggingface.co/flax-community/indonesian-roberta-base) on the indonlu dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1395
- Precision: 0.9625
- Recall: 0.9625
- F1: 0.9625
- Accuracy: 0.9625
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 420 | 0.2254 | 0.9313 | 0.9313 | 0.9313 | 0.9313 |
| 0.4398 | 2.0 | 840 | 0.1617 | 0.9499 | 0.9499 | 0.9499 | 0.9499 |
| 0.1566 | 3.0 | 1260 | 0.1431 | 0.9569 | 0.9569 | 0.9569 | 0.9569 |
| 0.103 | 4.0 | 1680 | 0.1412 | 0.9605 | 0.9605 | 0.9605 | 0.9605 |
| 0.0723 | 5.0 | 2100 | 0.1408 | 0.9635 | 0.9635 | 0.9635 | 0.9635 |
| 0.051 | 6.0 | 2520 | 0.1408 | 0.9642 | 0.9642 | 0.9642 | 0.9642 |
| 0.051 | 7.0 | 2940 | 0.1510 | 0.9635 | 0.9635 | 0.9635 | 0.9635 |
| 0.0368 | 8.0 | 3360 | 0.1653 | 0.9645 | 0.9645 | 0.9645 | 0.9645 |
| 0.0277 | 9.0 | 3780 | 0.1664 | 0.9644 | 0.9644 | 0.9644 | 0.9644 |
| 0.0231 | 10.0 | 4200 | 0.1668 | 0.9646 | 0.9646 | 0.9646 | 0.9646 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu118
- Datasets 2.16.1
- Tokenizers 0.15.1