|
--- |
|
license: mit |
|
base_model: flax-community/indonesian-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- indonlu |
|
language: |
|
- ind |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: indonesian-roberta-base-posp-tagger |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: indonlu |
|
type: indonlu |
|
config: posp |
|
split: test |
|
args: posp |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9625100240577386 |
|
- name: Recall |
|
type: recall |
|
value: 0.9625100240577386 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9625100240577386 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9625100240577386 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# indonesian-roberta-base-posp-tagger |
|
|
|
This model is a fine-tuned version of [flax-community/indonesian-roberta-base](https://huggingface.co/flax-community/indonesian-roberta-base) on the indonlu dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1395 |
|
- Precision: 0.9625 |
|
- Recall: 0.9625 |
|
- F1: 0.9625 |
|
- Accuracy: 0.9625 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 420 | 0.2254 | 0.9313 | 0.9313 | 0.9313 | 0.9313 | |
|
| 0.4398 | 2.0 | 840 | 0.1617 | 0.9499 | 0.9499 | 0.9499 | 0.9499 | |
|
| 0.1566 | 3.0 | 1260 | 0.1431 | 0.9569 | 0.9569 | 0.9569 | 0.9569 | |
|
| 0.103 | 4.0 | 1680 | 0.1412 | 0.9605 | 0.9605 | 0.9605 | 0.9605 | |
|
| 0.0723 | 5.0 | 2100 | 0.1408 | 0.9635 | 0.9635 | 0.9635 | 0.9635 | |
|
| 0.051 | 6.0 | 2520 | 0.1408 | 0.9642 | 0.9642 | 0.9642 | 0.9642 | |
|
| 0.051 | 7.0 | 2940 | 0.1510 | 0.9635 | 0.9635 | 0.9635 | 0.9635 | |
|
| 0.0368 | 8.0 | 3360 | 0.1653 | 0.9645 | 0.9645 | 0.9645 | 0.9645 | |
|
| 0.0277 | 9.0 | 3780 | 0.1664 | 0.9644 | 0.9644 | 0.9644 | 0.9644 | |
|
| 0.0231 | 10.0 | 4200 | 0.1668 | 0.9646 | 0.9646 | 0.9646 | 0.9646 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.0+cu118 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|