metadata
license: mit
library_name: transformers
base_model: wandb/mistral-7b-zephyr-sft
datasets:
- argilla/dpo-mix-7k
model-index:
- name: mistral-7b-zephyr-dpo
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 63.05
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/mistral-7b-zephyr-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.54
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/mistral-7b-zephyr-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.88
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/mistral-7b-zephyr-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 59.3
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/mistral-7b-zephyr-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.53
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/mistral-7b-zephyr-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.01
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/mistral-7b-zephyr-dpo
name: Open LLM Leaderboard
Mistral 7B Zephyr DPO V2
The Zephyr DPO recipe applied on top of Mistral 7B (new recipe with chatML format)
Model description
- Model type: A 7.2B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- Language(s) (NLP): Primarily English
- Finetuned from model: wandb/mistral-7b-zephyr-sft
Recipe
We trained using the alignment handbook recipe and logging to W&B
Visit the W&B workspace here
Compute provided by Lambda Labs - 8xA100 80GB node
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 63.22 |
AI2 Reasoning Challenge (25-Shot) | 63.05 |
HellaSwag (10-Shot) | 85.54 |
MMLU (5-Shot) | 61.88 |
TruthfulQA (0-shot) | 59.30 |
Winogrande (5-shot) | 78.53 |
GSM8k (5-shot) | 31.01 |