bert-suicide-detection-hk-large-new
This model is a fine-tuned version of hon9kon9ize/bert-large-cantonese on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5925
- Accuracy: 0.8987
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5908 | 0.0573 | 20 | 0.4476 | 0.7975 |
0.543 | 0.1146 | 40 | 0.4423 | 0.7722 |
0.5093 | 0.1719 | 60 | 0.5882 | 0.7722 |
0.5186 | 0.2292 | 80 | 0.6422 | 0.7658 |
0.502 | 0.2865 | 100 | 0.9382 | 0.7658 |
0.573 | 0.3438 | 120 | 0.4264 | 0.8228 |
0.5269 | 0.4011 | 140 | 0.5453 | 0.8481 |
0.3545 | 0.4585 | 160 | 0.4541 | 0.8924 |
0.4449 | 0.5158 | 180 | 0.4354 | 0.8924 |
0.3868 | 0.5731 | 200 | 0.8784 | 0.8481 |
0.7576 | 0.6304 | 220 | 0.3822 | 0.8861 |
0.1956 | 0.6877 | 240 | 0.4668 | 0.8797 |
0.4942 | 0.7450 | 260 | 0.5736 | 0.8481 |
0.4762 | 0.8023 | 280 | 0.2911 | 0.8987 |
0.4136 | 0.8596 | 300 | 0.3629 | 0.8608 |
0.5865 | 0.9169 | 320 | 0.9794 | 0.7722 |
0.3758 | 0.9742 | 340 | 0.4678 | 0.8734 |
0.4285 | 1.0315 | 360 | 0.5543 | 0.8671 |
0.44 | 1.0888 | 380 | 0.5150 | 0.8608 |
0.3573 | 1.1461 | 400 | 0.5635 | 0.8608 |
0.4187 | 1.2034 | 420 | 0.6609 | 0.8481 |
0.3742 | 1.2607 | 440 | 0.5913 | 0.8481 |
0.5179 | 1.3181 | 460 | 0.3984 | 0.8354 |
0.1685 | 1.3754 | 480 | 0.5607 | 0.8734 |
0.5284 | 1.4327 | 500 | 0.3528 | 0.8924 |
0.4246 | 1.4900 | 520 | 0.5857 | 0.8608 |
0.2419 | 1.5473 | 540 | 0.3496 | 0.9051 |
0.4416 | 1.6046 | 560 | 0.4946 | 0.8861 |
0.4426 | 1.6619 | 580 | 0.3458 | 0.9051 |
0.2122 | 1.7192 | 600 | 0.6184 | 0.8987 |
0.1734 | 1.7765 | 620 | 0.7278 | 0.8734 |
0.2314 | 1.8338 | 640 | 0.5430 | 0.8861 |
0.4886 | 1.8911 | 660 | 0.5081 | 0.8861 |
0.3429 | 1.9484 | 680 | 0.6000 | 0.8481 |
0.3591 | 2.0057 | 700 | 0.5184 | 0.8608 |
0.3638 | 2.0630 | 720 | 0.4008 | 0.8861 |
0.1881 | 2.1203 | 740 | 0.6161 | 0.8734 |
0.241 | 2.1777 | 760 | 0.5249 | 0.8861 |
0.4699 | 2.2350 | 780 | 0.5323 | 0.8861 |
0.3702 | 2.2923 | 800 | 0.7284 | 0.8481 |
0.4192 | 2.3496 | 820 | 0.3671 | 0.9051 |
0.1747 | 2.4069 | 840 | 0.4293 | 0.9051 |
0.347 | 2.4642 | 860 | 0.4047 | 0.8924 |
0.0533 | 2.5215 | 880 | 0.5135 | 0.8861 |
0.2002 | 2.5788 | 900 | 0.5535 | 0.8797 |
0.0274 | 2.6361 | 920 | 0.6635 | 0.8734 |
0.2339 | 2.6934 | 940 | 0.4940 | 0.8924 |
0.3015 | 2.7507 | 960 | 0.5514 | 0.8734 |
0.4222 | 2.8080 | 980 | 0.5412 | 0.8734 |
0.3243 | 2.8653 | 1000 | 0.5440 | 0.8734 |
0.3137 | 2.9226 | 1020 | 0.4534 | 0.8861 |
0.191 | 2.9799 | 1040 | 0.6083 | 0.8797 |
0.1213 | 3.0372 | 1060 | 0.5798 | 0.8734 |
0.1582 | 3.0946 | 1080 | 0.4830 | 0.8861 |
0.0546 | 3.1519 | 1100 | 0.7039 | 0.8734 |
0.0387 | 3.2092 | 1120 | 0.6059 | 0.8924 |
0.4619 | 3.2665 | 1140 | 0.6934 | 0.8861 |
0.2789 | 3.3238 | 1160 | 0.5247 | 0.9051 |
0.1361 | 3.3811 | 1180 | 0.6307 | 0.8797 |
0.0475 | 3.4384 | 1200 | 0.5455 | 0.8924 |
0.2889 | 3.4957 | 1220 | 0.5865 | 0.8797 |
0.2507 | 3.5530 | 1240 | 0.5029 | 0.8861 |
0.1476 | 3.6103 | 1260 | 0.6517 | 0.8797 |
0.0709 | 3.6676 | 1280 | 0.5607 | 0.8797 |
0.2416 | 3.7249 | 1300 | 0.6906 | 0.8671 |
0.2482 | 3.7822 | 1320 | 0.4523 | 0.8987 |
0.1591 | 3.8395 | 1340 | 0.3677 | 0.9177 |
0.1728 | 3.8968 | 1360 | 0.4237 | 0.9051 |
0.1061 | 3.9542 | 1380 | 0.3708 | 0.9241 |
0.1461 | 4.0115 | 1400 | 0.4642 | 0.9051 |
0.0671 | 4.0688 | 1420 | 0.5567 | 0.8924 |
0.0363 | 4.1261 | 1440 | 0.6240 | 0.8861 |
0.1257 | 4.1834 | 1460 | 0.7054 | 0.8734 |
0.1307 | 4.2407 | 1480 | 0.6526 | 0.8861 |
0.226 | 4.2980 | 1500 | 0.5883 | 0.8797 |
0.0714 | 4.3553 | 1520 | 0.5382 | 0.8987 |
0.0617 | 4.4126 | 1540 | 0.6030 | 0.8924 |
0.0802 | 4.4699 | 1560 | 0.5677 | 0.8924 |
0.2404 | 4.5272 | 1580 | 0.5837 | 0.8987 |
0.2311 | 4.5845 | 1600 | 0.6192 | 0.8987 |
0.0031 | 4.6418 | 1620 | 0.6153 | 0.8987 |
0.1621 | 4.6991 | 1640 | 0.6008 | 0.8924 |
0.0841 | 4.7564 | 1660 | 0.5887 | 0.8987 |
0.0014 | 4.8138 | 1680 | 0.5866 | 0.8987 |
0.1199 | 4.8711 | 1700 | 0.5909 | 0.8987 |
0.0124 | 4.9284 | 1720 | 0.5906 | 0.8987 |
0.046 | 4.9857 | 1740 | 0.5925 | 0.8987 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 86
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for wcyat/bert-suicide-detection-hk-large-new
Base model
hon9kon9ize/bert-large-cantonese