bert-suicide-detection-hk-large-new

This model is a fine-tuned version of hon9kon9ize/bert-large-cantonese on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5925
  • Accuracy: 0.8987

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5908 0.0573 20 0.4476 0.7975
0.543 0.1146 40 0.4423 0.7722
0.5093 0.1719 60 0.5882 0.7722
0.5186 0.2292 80 0.6422 0.7658
0.502 0.2865 100 0.9382 0.7658
0.573 0.3438 120 0.4264 0.8228
0.5269 0.4011 140 0.5453 0.8481
0.3545 0.4585 160 0.4541 0.8924
0.4449 0.5158 180 0.4354 0.8924
0.3868 0.5731 200 0.8784 0.8481
0.7576 0.6304 220 0.3822 0.8861
0.1956 0.6877 240 0.4668 0.8797
0.4942 0.7450 260 0.5736 0.8481
0.4762 0.8023 280 0.2911 0.8987
0.4136 0.8596 300 0.3629 0.8608
0.5865 0.9169 320 0.9794 0.7722
0.3758 0.9742 340 0.4678 0.8734
0.4285 1.0315 360 0.5543 0.8671
0.44 1.0888 380 0.5150 0.8608
0.3573 1.1461 400 0.5635 0.8608
0.4187 1.2034 420 0.6609 0.8481
0.3742 1.2607 440 0.5913 0.8481
0.5179 1.3181 460 0.3984 0.8354
0.1685 1.3754 480 0.5607 0.8734
0.5284 1.4327 500 0.3528 0.8924
0.4246 1.4900 520 0.5857 0.8608
0.2419 1.5473 540 0.3496 0.9051
0.4416 1.6046 560 0.4946 0.8861
0.4426 1.6619 580 0.3458 0.9051
0.2122 1.7192 600 0.6184 0.8987
0.1734 1.7765 620 0.7278 0.8734
0.2314 1.8338 640 0.5430 0.8861
0.4886 1.8911 660 0.5081 0.8861
0.3429 1.9484 680 0.6000 0.8481
0.3591 2.0057 700 0.5184 0.8608
0.3638 2.0630 720 0.4008 0.8861
0.1881 2.1203 740 0.6161 0.8734
0.241 2.1777 760 0.5249 0.8861
0.4699 2.2350 780 0.5323 0.8861
0.3702 2.2923 800 0.7284 0.8481
0.4192 2.3496 820 0.3671 0.9051
0.1747 2.4069 840 0.4293 0.9051
0.347 2.4642 860 0.4047 0.8924
0.0533 2.5215 880 0.5135 0.8861
0.2002 2.5788 900 0.5535 0.8797
0.0274 2.6361 920 0.6635 0.8734
0.2339 2.6934 940 0.4940 0.8924
0.3015 2.7507 960 0.5514 0.8734
0.4222 2.8080 980 0.5412 0.8734
0.3243 2.8653 1000 0.5440 0.8734
0.3137 2.9226 1020 0.4534 0.8861
0.191 2.9799 1040 0.6083 0.8797
0.1213 3.0372 1060 0.5798 0.8734
0.1582 3.0946 1080 0.4830 0.8861
0.0546 3.1519 1100 0.7039 0.8734
0.0387 3.2092 1120 0.6059 0.8924
0.4619 3.2665 1140 0.6934 0.8861
0.2789 3.3238 1160 0.5247 0.9051
0.1361 3.3811 1180 0.6307 0.8797
0.0475 3.4384 1200 0.5455 0.8924
0.2889 3.4957 1220 0.5865 0.8797
0.2507 3.5530 1240 0.5029 0.8861
0.1476 3.6103 1260 0.6517 0.8797
0.0709 3.6676 1280 0.5607 0.8797
0.2416 3.7249 1300 0.6906 0.8671
0.2482 3.7822 1320 0.4523 0.8987
0.1591 3.8395 1340 0.3677 0.9177
0.1728 3.8968 1360 0.4237 0.9051
0.1061 3.9542 1380 0.3708 0.9241
0.1461 4.0115 1400 0.4642 0.9051
0.0671 4.0688 1420 0.5567 0.8924
0.0363 4.1261 1440 0.6240 0.8861
0.1257 4.1834 1460 0.7054 0.8734
0.1307 4.2407 1480 0.6526 0.8861
0.226 4.2980 1500 0.5883 0.8797
0.0714 4.3553 1520 0.5382 0.8987
0.0617 4.4126 1540 0.6030 0.8924
0.0802 4.4699 1560 0.5677 0.8924
0.2404 4.5272 1580 0.5837 0.8987
0.2311 4.5845 1600 0.6192 0.8987
0.0031 4.6418 1620 0.6153 0.8987
0.1621 4.6991 1640 0.6008 0.8924
0.0841 4.7564 1660 0.5887 0.8987
0.0014 4.8138 1680 0.5866 0.8987
0.1199 4.8711 1700 0.5909 0.8987
0.0124 4.9284 1720 0.5906 0.8987
0.046 4.9857 1740 0.5925 0.8987

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
86
Safetensors
Model size
326M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for wcyat/bert-suicide-detection-hk-large-new

Finetuned
(2)
this model

Spaces using wcyat/bert-suicide-detection-hk-large-new 2