Tanuki-8B-vision / README.md
kanhatakeyama's picture
Update README.md (#1)
a5ff088 verified
|
raw
history blame
2.14 kB
metadata
license: apache-2.0

Tanuki-8B-vision

モデルについて

Tanuki-8B-visionは、LLaVA1.5に基づく視覚言語モデルです。言語モデルとして、Tanuki-8bのphase1モデル、画像エンコーダとしてgoogle/siglip-so400m-patch14-384を使用しています。

背景

  • 近年、視覚言語モデル(VLM)が注目されている一方で、商用利用可能な日本語データセットは限られています。本プロジェクトでは、データの合成を活用してこの課題に取り組むとともに、80億パラメータ(Tanuki-8B-vision)および500億パラメータ(Tanuki-8x8B-vision-exp)のVLMを開発しました
  • VLM開発は、GENIAC 松尾研 LLM開発プロジェクトの主要な開発目標としてではなく、有志の参加者によって実験的に行われました

使用したコード

学習

https://github.com/matsuolab/nedo_project_code/tree/team_hatakeyama_phase2/team_hatakeyama_phase2/multimodal/LLaVA-JP

データ合成

https://github.com/matsuolab/nedo_project_code/tree/team_hatakeyama_phase2/team_hatakeyama_phase2/multimodal/create-data-for-vlm

評価

https://github.com/matsuolab/nedo_project_code/tree/team_hatakeyama_phase2/team_hatakeyama_phase2/multimodal/heron

使い方

colab(model_pathは要変更)

https://github.com/matsuolab/nedo_project_code/blob/team_hatakeyama_phase2/team_hatakeyama_phase2/multimodal/LLaVA-JP/demo_llava_gradio.ipynb

ローカル

https://github.com/matsuolab/nedo_project_code/blob/team_hatakeyama_phase2/team_hatakeyama_phase2/multimodal/LLaVA-JP/demo_llava_gradio.py

評価

Heron VLM リーダーボード

GPT-4による評価 (gpt-4-turbo-2024-04-09) image/png