BenchmarkEngineering-F2-7B-slerp
This merge seeks to further improve on the original BenchmarkEngineering by integrating the Westlake-7B-v2 model. It does boost the Winogrande score but at the cost of the other benchmarks.
BenchmarkEngineering-F2-7B-slerp is a merge of the following models using LazyMergekit:
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 75.77 |
AI2 Reasoning Challenge (25-Shot) | 73.46 |
HellaSwag (10-Shot) | 88.88 |
MMLU (5-Shot) | 64.50 |
TruthfulQA (0-shot) | 72.37 |
Winogrande (5-shot) | 86.11 |
GSM8k (5-shot) | 69.29 |
🧩 Configuration
slices:
- sources:
- model: weezywitasneezy/BenchmarkEngineering-7B-slerp
layer_range: [0, 32]
- model: senseable/WestLake-7B-v2
layer_range: [0, 32]
merge_method: slerp
base_model: weezywitasneezy/BenchmarkEngineering-7B-slerp
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "weezywitasneezy/BenchmarkEngineering-F2-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for weezywitasneezy/BenchmarkEngineering-F2-7B-slerp
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard73.460
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard88.880
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.500
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard72.370
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard86.110
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard69.290