Model Card for EXAONE-3.5-7.8B-Stratos-Ko
Base Model
- beomi/EXAONE-3.5-7.8B-Instruct-Llamafied, Llamafied version of LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct
Dataset
- werty1248/Bespoke-Stratos-17k-KoEnKo-formatted
- From bespokelabs/Bespoke-Stratos-17k, fixes system prompt, only questions and answers translated, thinking part not translated.
Training
4xA100, 12 hours - Total 48 GPU Hours with A100 PCie
Trained with Axolotl, not LLaMA-Factory, but trying to follow SkyThought's training config as much as possible.
Difference
- sample packing: True
- optimizer: paged_adamw_32bit
Axolotl config
base_model: beomi/EXAONE-3.5-7.8B-Instruct-Llamafied
model_type: AutoModelForCausalLM
tokenizer_config: beomi/EXAONE-3.5-7.8B-Instruct-Llamafied
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: werty1248/Bespoke-Stratos-17k-KoEnKo-formatted
field_messages: conversations
type: chat_template
chat_template: chatml
dataset_prepared_path: ./data_preparation
output_dir: /workspace/data
hf_use_auth_token: true
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
wandb_project:
#wandb_entity:
#wandb_watch:
wandb_name:
#wandb_log_model:
gradient_accumulation_steps: 24
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 1.0e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
eval_table_size:
deepspeed: ./deepspeed_configs/zero3_bf16.json
Evaluation
HAERAE-HUB/HRM8K
- werty1248/EXAONE-3.5-7.8B-Stratos-Ko: temperature=0.0, max think tokens = 4096
- In the first stage, the model generates up to 4096 tokens.
- In the second stage, for answers that fail to generate an
<|end_of_thought|>
after using the maximum number of tokens, I add\n\n<|end_of_thought|>\n\n<|begin_of_solution|>
to end the thought and output the answer.
- LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct: temperature=0.7, top_p=0.95, max_tokens = 2048
- Other Models: Reported by OneLineAI - Creator of HRM8K Benchmark
Model | GSM8K | KSM | MATH | MMMLU | OMNI_MATH | Average |
---|---|---|---|---|---|---|
GPT-4o | 91.21 | 22.83 | 74.45 | 68.72 | 30.75 | 57.99 |
GPT-4o-mini | 87.57 | 19.40 | 70.68 | 63.40 | 26.45 | 53.50 |
*EXAONE-3.5-7.8B-Stratos-Ko | 83.02 | 15.97 | 67.49 | **44.68 | 24.62 | 49.98 |
EXAONE-3.5-7.8B-Instruct | 81.58 | 14.71 | 63.50 | ***41.49? | 21.69 | 44.19 |
Qwen2.5-14B-Instruct | 66.34 | 15.55 | 53.38 | 61.49 | 20.64 | 43.88 |
Llama-3.1-8B-Instruct | 77.79 | 7.21 | 49.01 | 47.02 | 15.92 | 39.39 |
Qwen2.5-7B-Instruct | 58.38 | 13.10 | 48.04 | 48.94 | 16.55 | 37.80 |
EXAONE-3.0-7.8B-Instruct | 72.33 | 7.98 | 46.79 | 37.66 | 15.35 | 36.02 |
*Ko-R1-1.5B-preview | 43.3 | ? | 73.1 | ? | 29.8 | ? |
* Korean Reasoning Models
** In a 4-option multiple-choice question, both correct answer numbber and answer alphabet are accepted as correct ('A' == 1, 'B' == 2, ...).
*** In a 4-option multiple-choice question, the correct answer *(not answer number) are accepted as correct.
Example
Q1: From ChuGyouk/GSM8k-Ko
input = tokenizer.apply_chat_template([ { "content": "Your role as an assistant involves thoroughly exploring questions through a systematic long thinking process before providing the final precise and accurate solutions. This requires engaging in a comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection, backtracing, and iteration to develop well-considered thinking process. Please structure your response into two main sections: Thought and Solution. In the Thought section, detail your reasoning process using the specified format: <|begin_of_thought|> {thought with steps separated with '\\n\\n'} <|end_of_thought|> Each step should include detailed considerations such as analisying questions, summarizing relevant findings, brainstorming new ideas, verifying the accuracy of the current steps, refining any errors, and revisiting previous steps. In the Solution section, based on various attempts, explorations, and reflections from the Thought section, systematically present the final solution that you deem correct. The solution should remain a logical, accurate, concise expression style and detail necessary step needed to reach the conclusion, formatted as follows: <|begin_of_solution|> {final formatted, precise, and clear solution written in the same language as the question.} <|end_of_solution|> Now, try to solve the following question through the above guidelines", "role": "system" },
{ "content": "Janetμ μ€λ¦¬λ ν루μ 16κ°μ λ¬κ±μ λ³μ΅λλ€. κ·Έλ
λ λ§€μΌ μμΉ¨ 3κ°μ λ¬κ±μ λ¨Ήκ³ , μΉκ΅¬λ€μ μν΄ 4κ°μ λ¬κ±λ‘ λ¨Ένμ κ΅½μ΅λλ€. κ·Έλ
λ λ¨μ λ¬κ±μ λμ°λ¬Ό μμ₯μμ μ μ ν μ€λ¦¬μ κ°λΉ 2λ¬λ¬μ ν맀ν©λλ€. κ·Έλ
λ λμ°λ¬Ό μμ₯μμ λ§€μΌ μΌλ§λ λ§μ λμ λ²κΉμ?", "role": "user" },], add_generation_prompt=True, return_tensors='pt')
res = model.generate(input.to('cuda'), max_length = 2048, stop_strings = ['<|end_of_solution|>'], tokenizer=tokenizer)
tokenizer.decode(res[0])
Output
[|assistant|]Okay, let's figure out how much money Janet makes each day from selling her eggs at the market. Let's break it down step by step.
First, Janet's ducks lay 16 eggs every day. So she has 16 eggs each day.
Next, she uses some of these eggs. She eats 3 eggs every morning. So after eating those 3, she has 16 minus 3 eggs left. Let's calculate that: 16 - 3 = 13 eggs left.
Then, she bakes muffins for her friends using 4 eggs. So after making the muffins, she has 13 - 4 eggs left. Let me do that subtraction: 13 - 4 = 9 eggs remaining.
These remaining eggs are the ones she sells at the market. So she has 9 eggs left each day.
Each egg is sold for $2 at the market. Therefore, the amount of money she makes is the number of eggs sold multiplied by the price per egg. So 9 eggs times $2 each equals $18.
Let me double-check to make sure I didn't make a mistake:
16 eggs per day
Eats 3 eggs: 16 - 3 = 13 eggs left
Bakes 4 eggs: 13 - 4 = 9 eggs
9 eggs Γ $2 each = $18
Yes, that adds up. So Janet sells the eggs at the market and makes $18 each day. That seems straightforward.
Wait, let me think again: she lays 16 eggs, uses 3, bakes 4, leaves 9, so sells 9. 9 times 2 is 18. Yep, that's correct.
Another way to check:
Total eggs each day: 16
Used eggs (eaten + baked): 3 + 4 = 7
So remaining eggs: 16 - 7 = 9
9 eggs Γ $2 = $18. Yep, same answer.
I don't see any other expenses or other factors here, so the answer should be $18 each day.
**Final Answer**
Janet makes $18 each day at the market.
<|end_of_thought|>
<|begin_of_solution|>
Janetμ λ§€μΌ 16κ°μ μ€λ¦¬μμλλλ€. κ·Έλ
λ λ§€μΌ μμΉ¨ 3κ°μ μμ λ¨Ήκ³ , 4κ°μ μλ‘ λ¨Ένμ κ΅½μ΅λλ€. κ·Έλ
κ° λ¨μ μ€λ¦¬μμ λμ°λ¬Ό μμ₯μμ κ°λΉ 2λ¬λ¬μ ν맀λ©λλ€.
1. **λ§€μΌ λ³λ μ**: \( 16 \)κ°
2. **λ§€μΌ λ¨Ήλ μ**: \( 3 \)κ°
3. **λ§€μΌ μ¬μ©νλ μ**: \( 3 + 4 = 7 \)κ°
4. **λ¨μ μ**: \( 16 - 7 = 9 \)κ°
λ¨μ 9κ°μ μμ λν ν맀 μμ΅μ λ€μκ³Ό κ°μ΅λλ€.
\[
9 \text{ μ} \times 2 \text{ λ¬λ¬/μ} = 18 \text{ λ¬λ¬}
\]
κ·Έλ¬λ―λ‘, κ·Έλ
λ λμ°λ¬Ό μμ₯μμ λ§€μΌ \(\boxed{18}\)λ¬λ¬λ₯Ό λ²κ³ μμ΅λλ€.
<|end_of_solution|>
Q2: From KSM, HAERAE-HUB/HRM8K
input = tokenizer.apply_chat_template([ { "content": "Your role as an assistant involves thoroughly exploring questions through a systematic long thinking process before providing the final precise and accurate solutions. This requires engaging in a comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection, backtracing, and iteration to develop well-considered thinking process. Please structure your response into two main sections: Thought and Solution. In the Thought section, detail your reasoning process using the specified format: <|begin_of_thought|> {thought with steps separated with '\\n\\n'} <|end_of_thought|> Each step should include detailed considerations such as analisying questions, summarizing relevant findings, brainstorming new ideas, verifying the accuracy of the current steps, refining any errors, and revisiting previous steps. In the Solution section, based on various attempts, explorations, and reflections from the Thought section, systematically present the final solution that you deem correct. The solution should remain a logical, accurate, concise expression style and detail necessary step needed to reach the conclusion, formatted as follows: <|begin_of_solution|> {final formatted, precise, and clear solution written in the same language as the question.} <|end_of_solution|> Now, try to solve the following question through the above guidelines", "role": "system" },
{ "content": "μμ μ€μ μ λνμ¬ ν¨μ λ₯Ό \\[ f(t) = \\int_{0}^{\\sqrt{t}} \\int_{y}^{\\sqrt{t}} \\frac{1}{2 + \\sin(x^2)} \\, dx \\, dy \\] λ‘ μ μν λ, μ κ°μ ꡬνμμ€.", "role": "user" },], add_generation_prompt=True, return_tensors='pt')
res = model.generate(input.to('cuda'), max_length = 8192, stop_strings = ['<|end_of_solution|>'], tokenizer=tokenizer)
tokenizer.decode(res[0])
Output(νκ΅μ΄λ‘ μκ°ν¨???)
[|assistant|]
λ¨Όμ μ£Όμ΄μ§ ν¨μ \( f(t) \)λ₯Ό μ΄ν΄νκΈ° μν΄ μ΄μ€ μ λΆμ λΆμν΄μΌ ν©λλ€. ν¨μλ λ κ°μ μ€μ²©λ μ λΆμΌλ‘ μ μλ©λλ€:
\[
f(t) = \int_{0}^{\sqrt{t}} \int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \, dy
\]
μ΄ ννμμ \( x \)μ λν λ΄λΆ μ λΆ \( \int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \)μ κ²°κ³ΌμΈ \( y \)μ λν μΈλΆ μ λΆ \( \int_{0}^{\sqrt{t}} dy \)λ₯Ό λνλ
λλ€. μ΄λ \( y \)κ° \( 0 \)μμ \( \sqrt{t} \) μ¬μ΄μ μμμ κ°μ μ·¨νλ©°, \( x \)λ \( y \)λΆν° \( \sqrt{t} \)κΉμ§μ κ°μ μ·¨νλ μμ \( R \)μ λνλ
λλ€. μμ \( R \)μ λ²μμ κ΄κ³λ₯Ό μ΄ν΄νλ©΄ μ£Όμ΄μ§ μ λΆμ μλ―Έλ₯Ό λ μ νμ
ν μ μμ΅λλ€.
\( y \)κ° 0λΆν° \( \sqrt{t} \)κΉμ§, κ·Έλ¦¬κ³ \( x \)κ° \( y \)λΆν° \( \sqrt{t} \)κΉμ§ λ³ν λ, μμ \( R \)μ μ§μ¬κ°νμ μΌλΆκ° λ μ μμ΅λλ€. \( y \)κ° 0μΈ κ²½μ°, \( x \)λ 0μμ \( \sqrt{t} \)κΉμ§ μ¦κ°ν©λλ€. \( y \)κ° \( \sqrt{t} \)μΈ κ²½μ°, \( x \)λ \( \sqrt{t} \)μμ λ€μ \( \sqrt{t} \)λ‘ λμμ΅λλ€. \( y \)κ° \( 0 \)κ³Ό \( \sqrt{t} \) μ¬μ΄μ μ΄λ€ κ° \( y_0 \)μΈ κ²½μ°, \( x \)λ \( y_0 \)μμ \( \sqrt{t} \)κΉμ§ μ¦κ°ν©λλ€. λ°λΌμ, μμ \( R \)μ λ€μκ³Ό κ°μ λ€ κ°μ μ¬κ°νμΌλ‘ ꡬμ±λ μ μμ΅λλ€:
- \( y = 0 \)λΆν° \( y = a \)κΉμ§ (λ¨, \( a \leq \sqrt{t} \))μ μ¬κ°ν: μ΄λ \( x \)λ \( 0 \)κ³Ό \( \sqrt{t} \) μ¬μ΄.
- \( y = a \)λΆν° \( y = \sqrt{t} \)κΉμ§ (λ¨, \( a \leq y \leq \sqrt{t} \))μ μ¬κ°ν: μ΄λ \( x \)λ \( a \)λΆν° \( \sqrt{t} \) μ¬μ΄.
μ΄ μ¬κ°νλ€μ \( y = a \)μμ μ ν©λλ€. λ°λΌμ, \( y \)μ λ²μλ \( 0 \)μμ \( \sqrt{t} \) μ¬μ΄μ μκ³ , \( a \)λ μ΄μ μ μ μλ νΉμ κ°, λλ \( t \)μ μν΄ κ²°μ λλ κ°μ
λλ€.
λ¬Έμ λ \( f'(t) \)λ₯Ό κ²°μ νλ κ²μ
λλ€. μ΄λ \( t \)μ λν \( f(t) \)μ λν¨μλ‘, Leibniz μ λΆ κ·μΉμ μ¬μ©νμ¬ κ΅¬ν μ μμ΅λλ€. μ΄μ€ μ λΆμ λν Leibniz μ λΆ κ·μΉμ λ€μκ³Ό κ°μ΅λλ€:
\[
\frac{d}{dt} \int_{a(t)}^{b(t)} \int_{c(t)}^{d(t)} f(x, y) \, dx \, dy = \int_{a(t)}^{b(t)} \frac{\partial}{\partial t} \left[ \int_{c(t)}^{d(t)} f(x, y) \, dx \right] \, dy + \int_{c(t)}^{d(t)} \frac{\partial}{\partial t} \left[ \int_{a(t)}^{d(t)} f(x, y) \, dx \right] \, dy
\]
μ£Όμ΄μ§ ν¨μ \( f(t) \)λ λ€μκ³Ό κ°μ΄ μΈ μ μμ΅λλ€:
\[
f(t) = \int_{0}^{\sqrt{t}} \left( \int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \right) dy
\]
λ°λΌμ, Leibniz κ·μΉμ μ μ©νλ©΄, \( f'(t) \)λ λ€μ λ κ°μ μ λΆμ ν¬ν¨ν©λλ€:
1. \( y \)μ λν μΈλΆ μ λΆ: \( \int_{0}^{\sqrt{t}} \frac{\partial}{\partial t} \left( \int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \right) dy \)
2. \( x \)μ λν λ΄λΆ μ λΆ: \( \int_{0}^{\sqrt{t}} \frac{\partial}{\partial t} \left( \int_{0}^{x} \frac{1}{2 + \sin(y^2)} \, dy \right) dx \)
μ΄ λ κ°λ₯Ό λͺ¨λ κ³μ°ν΄μΌ ν©λλ€.
λ¨Όμ , \( y \)μ λν μΈλΆ μ λΆμ λ¨μνν©λλ€. \( \frac{\partial}{\partial t} \left( \int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \right) \)λ₯Ό κ³μ°ν©λλ€. μ΄λ Leibniz κ·μΉμ μ¬μ©ν λ΄λΆ μ λΆμ λν \( t \)μ λν λν¨μλ‘ μΈ μ μμ΅λλ€:
\[
\frac{\partial}{\partial t} \left( \int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \right) = \frac{1}{2 + \sin((\sqrt{t})^2)} \cdot \frac{d}{dt}(\sqrt{t}) = \frac{1}{2 + \sin(t)} \cdot \frac{1}{2\sqrt{t}}
\]
λ°λΌμ, 첫 λ²μ§Έ λΆλΆ μ λΆμ λ€μκ³Ό κ°μ΅λλ€:
\[
\int_{0}^{\sqrt{t}} \frac{1}{2 + \sin(t)} \cdot \frac{1}{2\sqrt{t}} dy = \frac{1}{2\sqrt{t}(2 + \sin(t))} \int_{0}^{\sqrt{t}} dy = \frac{1}{2\sqrt{t}(2 + \sin(t))} \cdot \sqrt{t} = \frac{1}{2(2 + \sin(t))}
\]
λ€μμΌλ‘, \( x \)μ λν λ΄λΆ μ λΆμ λ¨μνν©λλ€. \( \frac{\partial}{\partial t} \left( \int_{0}^{x} \frac{1}{2 + \sin(y^2)} \, dy \right) \)λ₯Ό κ³μ°ν©λλ€. μ΄λ \( y = x \)μμ \( t \)μ λν λν¨μλ‘ μΈ μ μμ΅λλ€:
\[
\frac{\partial}{\partial t} \left( \int_{0}^{x} \frac{1}{2 + \sin(y^2)} \, dy \right) = \frac{\partial}{\partial t} \left( \int_{0}^{x} f(y) \, dy \right) = f(x) = \frac{1}{2 + \sin(x^2)}
\]
λ°λΌμ, λ λ²μ§Έ λΆλΆ μ λΆμ λ€μκ³Ό κ°μ΅λλ€:
\[
\int_{0}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx
\]
μ΄κ²μ κ²°ν©νλ©΄, \( f'(t) \)μ μ 체 μμ λ€μκ³Ό κ°μ΅λλ€:
\[
f'(t) = \frac{1}{2(2 + \sin(t))} + \int_{0}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx
\]
\( f'(t) \)μ κ° λΆλΆμ λ¨μννλ©΄ λ€μκ³Ό κ°μ΅λλ€:
1. 첫 λ²μ§Έ ν \( \frac{1}{2(2 + \sin(t))} = \frac{1}{4 + 2\sin(t)} \)
2. λ λ²μ§Έ νμ μ λΆλμμ§λ§, μ£Όμ΄μ§ ννλ‘ λ¨μνν μ μμ΅λλ€ (λ 볡μ‘ν¨). κ·Έλ¬λ \( t_{\text{max}} \)λ₯Ό ꡬν λ λ¬Έμ κ° νμλ‘ ν©λλ€.
λ°λΌμ, \( f'(t) \)λ λ€μκ³Ό κ°μ΅λλ€:
\[
f'(t) = \frac{1}{4 + 2\sin(t)} + \int_{0}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx
\]
\( t = \frac{\pi}{2} \)μΈ κ²½μ°, μ°λ¦¬λ \( f'\left( \frac{\pi}{2} \right) \)λ₯Ό νμλ‘ ν©λλ€.
λ¨Όμ , 첫 λ²μ§Έ νμ νκ°ν©λλ€:
\[
\frac{1}{4 + 2\sin\left( \frac{\pi}{2} \right)} = \frac{1}{4 + 2 \cdot 1} = \frac{1}{6}
\]
λ λ²μ§Έ νμ νκ°νλ €λ©΄, \( \sin\left( x^2 \right) \)μ λν \( x \)μ λν μ λΆμ \( \frac{\pi}{2} \)κΉμ§ \( \sqrt{t} \)κΉμ§ κ³ λ €ν΄μΌ ν©λλ€. νμ§λ§ \( t = \frac{\pi}{2} \)μ΄λ―λ‘, μ΄ μ λΆμ \( x \)κ° 0μμ \( \sqrt{\frac{\pi}{2}} \)κΉμ§μ λ²μλ₯Ό κ°κ² λ©λλ€. κ·Έλ¬λ μ°λ¦¬κ° μκ³ μλ μ μ \( \sin(x^2) \)μ μ λΆμ λν λ«ν ννκ° μ‘΄μ¬νμ§ μμΌλ©°, λ°λΌμ μ λΆμ μ§μ μ μΌλ‘ νκ°ν μ μλ€λ κ²μ
λλ€. μ΄ μ λΆμ μ£Όμ΄μ§ λ²μμμ \(\sin(x^2)\)μ μ£ΌκΈ°μ μ΄κ³ 볡μ‘ν νλ λλ¬Έμ νκ°ν μ μμ΅λλ€.
κ·Έλ¬λ λ¬Έμ μ λ§₯λ½μμ μ£Όμ΄μ§ κ°μ λ°νμΌλ‘ κ°λ₯ν κ°λ¨ν λλ νΉμ κ°μ νμ©μ κ³ λ €ν μ μμ΅λλ€. μ£Όμ΄μ§ μ νμ§μ κ³μ° κ²°κ³Όλ₯Ό ν΅ν΄, \( f'\left( \frac{\pi}{2} \right) \)μ κ°μ 첫 λ²μ§Έ ν \( \frac{1}{6} \)κ³Ό λ λ²μ§Έ ν \(\int_{0}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx\)μ ν©μΌλ‘λΆν° μΆμ λ©λλ€. μ λΆμ μ±μ§κ³Ό \( x = 0 \)μμ \( x = \sqrt{\frac{\pi}{2}} \)κΉμ§ \( 2 + \sin(x^2) \)μ λν λμΉμ±μ κ³ λ €ν λ, 첫 λ²μ§Έ νκ³Ό λ λ²μ§Έ ν λͺ¨λ \( \frac{1}{6} \)μ κ°κΉμΈ μλ μμ§λ§, μ€μ λ‘ \( t = \frac{\pi}{2} \)λ₯Ό μ¬μ©νλ λ¬Έμ μ λ§₯λ½μμ μ΄ μ λΆμ κ°μ κ°λ¨ννκΈ° μ΄λ ΅μ΅λλ€.
κ·Έλ¬λ, λ¬Έμ μ λ§₯λ½κ³Ό μ£Όμ΄μ§ λ΅μ§ μ€ κ°μ₯ κ°λ₯μ± μλ κ°μ μ ννκΈ° μν΄, \( f'\left( \frac{\pi}{2} \right) \)μ λν λ¨μνλ μ κ·Ό λ°©μκ³Ό κ°λ₯ν λ¨μνλ₯Ό κ³ λ €ν΄μΌ ν©λλ€. κ·Έλ¬λ λ λ²μ§Έ λΆλΆμ μ μΈνκ³ λ \( f'\left( \frac{\pi}{2} \right) = \frac{1}{6} \)μ
λλ€.
\[
f'\left( \frac{\pi}{2} \right) = \frac{1}{6} + \int_{0}^{\sqrt{\pi/2}} \frac{1}{2 + \sin(x^2)} \, dx
\]
μ΄κ²μ μ€μ λ‘ λ 볡μ‘ν νκ°λ₯Ό νμλ‘ νλ©°, μΌλ°μ μΈ μν λ¬Έμ ν΄κ²° λ°©λ²μΌλ‘λ λ¨μνλμ§ μμ΅λλ€. κ·Έλ¬λ λ¬Έμ μ λ§₯λ½κ³Ό μ£Όμ΄μ§ ν΄λ΅ μ νμ§μ λ°λΌ, μ΄ μ λΆμ 무μλκ³ \( \frac{1}{6} \)λ§ λ¨κ² λ©λλ€. μ΄λ λ¬Έμ λ₯Ό λ¨μννκ±°λ νΉμ λμΉμ±μ μ¬μ©νκΈ° λλ¬Έμ κ°λ₯ν©λλ€.
\[
\boxed{\frac{1}{6}}
\]
<|end_of_thought|>
<|begin_of_solution|>
ν¨μ \( f(t) \)λ λ€μκ³Ό κ°μ΄ μ μλ©λλ€.
\[ f(t) = \int_{0}^{\sqrt{t}} \int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \, dy \]
\( t \)μ λν λν¨μ \( f'\left(t\right) \)λ₯Ό ꡬνκΈ° μν΄ Leibniz μ λΆ κ·μΉμ μ¬μ©ν©λλ€.
\( f'(t) \)λ \( y \)μ λν μΈλΆ μ λΆκ³Ό \( x \)μ λν λ΄λΆ μ λΆμ λν¨μλ₯Ό ν¬ν¨ν©λλ€.
1. **\( y \)μ λν μΈλΆ μ λΆ:**
\[
\frac{\partial}{\partial t} \left( \int_{y}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx \right) = \frac{1}{2 + \sin(t)} \cdot \frac{1}{2\sqrt{t}}
\]
μ΄ κ²°κ³Όλ₯Ό 0μμ \( \sqrt{t} \)κΉμ§ μ λΆνλ©΄,
\[
\frac{1}{2\sqrt{t}(2 + \sin(t))} \int_{0}^{\sqrt{t}} dy = \frac{1}{2(2 + \sin(t))}
\]
2. **\( x \)μ λν λ΄λΆ μ λΆ:**
\[
\frac{\partial}{\partial t} \left( \int_{0}^{x} \frac{1}{2 + \sin(y^2)} \, dy \right) = \frac{1}{2 + \sin(x^2)}
\]
μ΄ κ²°κ³Όλ₯Ό 0μμ \( \sqrt{t} \)κΉμ§ μ λΆνλ©΄,
\[
\int_{0}^{\sqrt{t}} \frac{1}{2 + \sin(x^2)} \, dx
\]
\( t = \frac{\pi}{2} \)λ₯Ό \( f'(t) \)μ λμ
νλ©΄,
\[
f'\left(\frac{\pi}{2}\right) = \frac{1}{2(2 + \sin(\pi/2))} + \int_{0}^{\sqrt{\pi/2}} \frac{1}{2 + \sin(x^2)} \, dx
\]
\( \sin(\pi/2) = 1 \)μ΄λ―λ‘,
\[
\frac{1}{2(2 + 1)} = \frac{1}{6}
\]
λ λ²μ§Έ νμ μ ννκ² νκ°λμ§ μμΌλ©°, λ¬Έμ μ λ§₯λ½μμ κ³ λ €νμ§ μκ³ , μ΅μ’
λ΅μ λ€μκ³Ό κ°μ΅λλ€.
\[
\boxed{\frac{1}{6}}
\]
<|end_of_solution|>
Q3: General Knowledge
input = tokenizer.apply_chat_template([ { "content": "Your role as an assistant involves thoroughly exploring questions through a systematic long thinking process before providing the final precise and accurate solutions. This requires engaging in a comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection, backtracing, and iteration to develop well-considered thinking process. Please structure your response into two main sections: Thought and Solution. In the Thought section, detail your reasoning process using the specified format: <|begin_of_thought|> {thought with steps separated with '\\n\\n'} <|end_of_thought|> Each step should include detailed considerations such as analisying questions, summarizing relevant findings, brainstorming new ideas, verifying the accuracy of the current steps, refining any errors, and revisiting previous steps. In the Solution section, based on various attempts, explorations, and reflections from the Thought section, systematically present the final solution that you deem correct. The solution should remain a logical, accurate, concise expression style and detail necessary step needed to reach the conclusion, formatted as follows: <|begin_of_solution|> {final formatted, precise, and clear solution written in the same language as the question.} <|end_of_solution|> Now, try to solve the following question through the above guidelines", "role": "system" },
{ "content": "μΈκ³μμ μΈ λ²μ§Έλ‘ λμ μ°μ?", "role": "user" },], add_generation_prompt=True, return_tensors='pt')
res = model.generate(input.to('cuda'), max_length = 2048, temperature = 0.5, stop_strings = ['<|end_of_solution|>'], tokenizer=tokenizer)
tokenizer.decode(res[0])
- Normal temperature: hallucination (unstable answer)
- Low temperature: repitition
Output
[|assistant|]
Okay, so I need to figure out the third highest mountain in the world. Hmm, I know that Mount Everest is the highest, so that's first. But where does the third one come in?
First, I should confirm the order of the highest mountains. Let me think. I think there are a few peaks in the Himalayas, right? Because Mount Everest is in the Himalayas. So maybe the next ones are also in that range.
Let me try to recall the order. The highest is Mount Everest, then K2, then Kangchenjunga, then Lhotse, then Makalu, then Cho Oyu, then Dhaulagiri, then Manaslu, then Nanga Parbat. Wait, is that correct?
Wait, I might be mixing up some names. Let me check. Mount Everest is the highest, then K2 is the second highest. So the third highest is Kangchenjunga? Or is it Lhotse?
Wait, I'm a bit confused here. Maybe I need to look this up to be sure.
Upon checking, the correct order is:
1. Mount Everest
2. K2
3. Kangchenjunga
4. Lhotse
5. Makalu
6. Cho Oyu
7. Dhaulagiri
8. Manaslu
9. Nanga Parbat
So, yes, Kangchenjunga is the third highest mountain in the world.
But wait, is there any debate about this? I recall that there have been some discussions about the exact heights of some of these peaks, but generally, the order is accepted as above.
Kangchenjunga is located in the Himalayas on the border between Nepal and India. It has an elevation of 8,586 meters (28,169 feet). It's a sacred mountain in the region and is known for its challenging climbing routes.
So, to answer the question: the third highest mountain in the world is Kangchenjunga.
**Final Answer**
The third highest mountain in the world is Kangchenjunga.
<|end_of_thought|>
<|begin_of_solution|>
μΈκ³μμ μΈ λ²μ§Έλ‘ λμ μ°μ 무μμΌκΉμ?
1. **μλ² λ μ€νΈ**κ° κ°μ₯ λλ€λ κ²μ μκ³ μμ΅λλ€.
2. κ·Έ λ€μμ **K2**μ
λλ€.
3. **Kangchenjunga**λ μΈ λ²μ§Έλ‘ λμ΅λλ€.
Kangchenjungaλ λ€νκ³Ό μΈλ μ¬μ΄μ νλ§λΌμΌμ μμΉνλ©°, λμ΄λ μ½ 8,586λ―Έν°(28,169νΌνΈ)μ
λλ€.
λ°λΌμ μ΅μ’
λ΅λ³μ λ€μκ³Ό κ°μ΅λλ€.
\boxed{Kangchenjunga}
<|end_of_solution|>
- Downloads last month
- 68
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.