File size: 47,874 Bytes
fe00c53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
2022-04-08 22:02:12,850 INFO [decode.py:583] Decoding started
2022-04-08 22:02:12,851 INFO [decode.py:584] {'subsampling_factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80, 'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 6, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'env_info': {'k2-version': '1.14', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '6833270cb228aba7bf9681fccd41e2b52f7d984c', 'k2-git-date': 'Wed Mar 16 11:16:05 2022', 'lhotse-version': '1.0.0.dev+git.d917411.clean', 'torch-cuda-available': True, 'torch-cuda-version': '11.1', 'python-version': '3.7', 'icefall-git-branch': 'gigaspeech_recipe', 'icefall-git-sha1': 'c3993a5-dirty', 'icefall-git-date': 'Mon Mar 21 13:49:39 2022', 'icefall-path': '/userhome/user/guanbo/icefall_decode', 'k2-path': '/opt/conda/lib/python3.7/site-packages/k2-1.14.dev20220408+cuda11.1.torch1.10.0-py3.7-linux-x86_64.egg/k2/__init__.py', 'lhotse-path': '/userhome/user/guanbo/lhotse/lhotse/__init__.py', 'hostname': 'd7b02ab00b70c011ec0a3ee069db84328338-chenx8564-0', 'IP address': '10.9.150.18'}, 'epoch': 18, 'avg': 6, 'method': 'attention-decoder', 'num_paths': 1000, 'nbest_scale': 0.5, 'exp_dir': PosixPath('conformer_ctc/exp_500_8_2'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 20, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 1, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'subset': 'XL', 'lazy_load': True, 'small_dev': False}
2022-04-08 22:02:13,611 INFO [lexicon.py:176] Loading pre-compiled data/lang_bpe_500/Linv.pt
2022-04-08 22:02:13,897 INFO [decode.py:594] device: cuda:0
2022-04-08 22:02:19,463 INFO [decode.py:656] Loading pre-compiled G_4_gram.pt
2022-04-08 22:02:23,064 INFO [decode.py:692] averaging ['conformer_ctc/exp_500_8_2/epoch-13.pt', 'conformer_ctc/exp_500_8_2/epoch-14.pt', 'conformer_ctc/exp_500_8_2/epoch-15.pt', 'conformer_ctc/exp_500_8_2/epoch-16.pt', 'conformer_ctc/exp_500_8_2/epoch-17.pt', 'conformer_ctc/exp_500_8_2/epoch-18.pt']
2022-04-08 22:04:17,302 INFO [decode.py:699] Number of model parameters: 109226120
2022-04-08 22:04:17,303 INFO [asr_datamodule.py:372] About to get dev cuts
2022-04-08 22:04:21,114 INFO [decode.py:497] batch 0/?, cuts processed until now is 3
2022-04-08 22:06:56,367 INFO [decode.py:497] batch 100/?, cuts processed until now is 243
2022-04-08 22:09:33,967 INFO [decode.py:497] batch 200/?, cuts processed until now is 464
2022-04-08 22:12:05,730 INFO [decode.py:497] batch 300/?, cuts processed until now is 665
2022-04-08 22:13:23,989 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 4.93 GiB (GPU 0; 31.75 GiB total capacity; 24.54 GiB already allocated; 3.87 GiB free; 26.53 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:13:23,989 INFO [decode.py:743] num_arcs before pruning: 333034
2022-04-08 22:13:23,989 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:13:24,010 INFO [decode.py:757] num_arcs after pruning: 7258
2022-04-08 22:14:38,171 INFO [decode.py:497] batch 400/?, cuts processed until now is 891
2022-04-08 22:17:05,640 INFO [decode.py:497] batch 500/?, cuts processed until now is 1098
2022-04-08 22:19:29,901 INFO [decode.py:497] batch 600/?, cuts processed until now is 1363
2022-04-08 22:20:05,953 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.51 GiB already allocated; 7.07 GiB free; 23.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:20:05,954 INFO [decode.py:743] num_arcs before pruning: 514392
2022-04-08 22:20:05,954 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:20:05,966 INFO [decode.py:757] num_arcs after pruning: 13888
2022-04-08 22:22:02,765 INFO [decode.py:497] batch 700/?, cuts processed until now is 1626
2022-04-08 22:24:05,393 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 14.24 GiB already allocated; 7.07 GiB free; 23.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:24:05,393 INFO [decode.py:743] num_arcs before pruning: 164808
2022-04-08 22:24:05,393 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:24:05,404 INFO [decode.py:757] num_arcs after pruning: 8771
2022-04-08 22:24:40,652 INFO [decode.py:497] batch 800/?, cuts processed until now is 1870
2022-04-08 22:25:03,574 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 14.28 GiB already allocated; 7.07 GiB free; 23.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:25:03,575 INFO [decode.py:743] num_arcs before pruning: 267824
2022-04-08 22:25:03,575 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:25:03,582 INFO [decode.py:757] num_arcs after pruning: 9250
2022-04-08 22:27:25,872 INFO [decode.py:497] batch 900/?, cuts processed until now is 2134
2022-04-08 22:29:45,824 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 14.45 GiB already allocated; 7.06 GiB free; 23.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:29:45,825 INFO [decode.py:743] num_arcs before pruning: 236799
2022-04-08 22:29:45,825 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:29:45,837 INFO [decode.py:757] num_arcs after pruning: 7885
2022-04-08 22:30:03,747 INFO [decode.py:497] batch 1000/?, cuts processed until now is 2380
2022-04-08 22:30:44,532 INFO [decode.py:736] Caught exception:

    Some bad things happened. Please read the above error messages and stack
    trace. If you are using Python, the following command may be helpful:

      gdb --args python /path/to/your/code.py

    (You can use `gdb` to debug the code. Please consider compiling
    a debug version of k2.).

    If you are unable to fix it, please open an issue at:

      https://github.com/k2-fsa/k2/issues/new
    

2022-04-08 22:30:44,532 INFO [decode.py:743] num_arcs before pruning: 632546
2022-04-08 22:30:44,533 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:30:44,585 INFO [decode.py:757] num_arcs after pruning: 10602
2022-04-08 22:32:41,978 INFO [decode.py:497] batch 1100/?, cuts processed until now is 2624
2022-04-08 22:34:54,199 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.67 GiB already allocated; 5.68 GiB free; 24.72 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:34:54,200 INFO [decode.py:743] num_arcs before pruning: 227558
2022-04-08 22:34:54,200 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:34:54,218 INFO [decode.py:757] num_arcs after pruning: 8505
2022-04-08 22:35:25,806 INFO [decode.py:497] batch 1200/?, cuts processed until now is 2889
2022-04-08 22:38:28,827 INFO [decode.py:497] batch 1300/?, cuts processed until now is 3182
2022-04-08 22:39:35,318 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 2.65 GiB (GPU 0; 31.75 GiB total capacity; 27.28 GiB already allocated; 1.20 GiB free; 29.19 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:39:35,318 INFO [decode.py:743] num_arcs before pruning: 348294
2022-04-08 22:39:35,318 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:39:35,324 INFO [decode.py:757] num_arcs after pruning: 4422
2022-04-08 22:41:48,886 INFO [decode.py:497] batch 1400/?, cuts processed until now is 3491
2022-04-08 22:42:03,583 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 4.53 GiB (GPU 0; 31.75 GiB total capacity; 24.43 GiB already allocated; 1.20 GiB free; 29.19 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:42:03,584 INFO [decode.py:743] num_arcs before pruning: 446338
2022-04-08 22:42:03,584 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:42:03,592 INFO [decode.py:757] num_arcs after pruning: 13422
2022-04-08 22:44:41,081 INFO [decode.py:497] batch 1500/?, cuts processed until now is 3738
2022-04-08 22:44:48,819 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 1.94 GiB (GPU 0; 31.75 GiB total capacity; 29.06 GiB already allocated; 231.75 MiB free; 30.17 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:44:48,820 INFO [decode.py:743] num_arcs before pruning: 263598
2022-04-08 22:44:48,820 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:44:48,833 INFO [decode.py:757] num_arcs after pruning: 7847
2022-04-08 22:47:10,728 INFO [decode.py:497] batch 1600/?, cuts processed until now is 3970
2022-04-08 22:47:52,235 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 5.20 GiB (GPU 0; 31.75 GiB total capacity; 24.71 GiB already allocated; 231.75 MiB free; 30.17 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:47:52,236 INFO [decode.py:743] num_arcs before pruning: 317009
2022-04-08 22:47:52,236 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:47:52,252 INFO [decode.py:757] num_arcs after pruning: 9354
2022-04-08 22:49:32,370 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 4.55 GiB (GPU 0; 31.75 GiB total capacity; 24.05 GiB already allocated; 231.75 MiB free; 30.17 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:49:32,371 INFO [decode.py:743] num_arcs before pruning: 136624
2022-04-08 22:49:32,371 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:49:32,402 INFO [decode.py:757] num_arcs after pruning: 5456
2022-04-08 22:49:36,398 INFO [decode.py:497] batch 1700/?, cuts processed until now is 4192
2022-04-08 22:50:50,382 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.56 GiB already allocated; 2.10 GiB free; 28.29 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:50:50,383 INFO [decode.py:743] num_arcs before pruning: 303893
2022-04-08 22:50:50,383 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:50:50,400 INFO [decode.py:757] num_arcs after pruning: 9312
2022-04-08 22:52:09,335 INFO [decode.py:497] batch 1800/?, cuts processed until now is 4416
2022-04-08 22:52:51,744 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 5.02 GiB (GPU 0; 31.75 GiB total capacity; 26.25 GiB already allocated; 2.10 GiB free; 28.29 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:52:51,745 INFO [decode.py:743] num_arcs before pruning: 379292
2022-04-08 22:52:51,745 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:52:51,751 INFO [decode.py:757] num_arcs after pruning: 14317
2022-04-08 22:54:33,478 INFO [decode.py:497] batch 1900/?, cuts processed until now is 4619
2022-04-08 22:56:34,371 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.32 GiB already allocated; 3.07 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:56:34,372 INFO [decode.py:743] num_arcs before pruning: 294097
2022-04-08 22:56:34,372 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:56:34,389 INFO [decode.py:757] num_arcs after pruning: 5895
2022-04-08 22:56:47,967 INFO [decode.py:497] batch 2000/?, cuts processed until now is 4816
2022-04-08 22:58:06,236 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.41 GiB already allocated; 3.06 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:58:06,236 INFO [decode.py:743] num_arcs before pruning: 253855
2022-04-08 22:58:06,236 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:58:06,253 INFO [decode.py:757] num_arcs after pruning: 9191
2022-04-08 22:58:17,534 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 2.17 GiB (GPU 0; 31.75 GiB total capacity; 26.06 GiB already allocated; 1.56 GiB free; 28.83 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:58:17,535 INFO [decode.py:743] num_arcs before pruning: 242689
2022-04-08 22:58:17,535 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:58:17,549 INFO [decode.py:757] num_arcs after pruning: 4733
2022-04-08 22:58:32,154 INFO [decode.py:736] Caught exception:
CUDA out of memory. Tried to allocate 2.38 GiB (GPU 0; 31.75 GiB total capacity; 26.65 GiB already allocated; 1.57 GiB free; 28.82 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 22:58:32,155 INFO [decode.py:743] num_arcs before pruning: 288302
2022-04-08 22:58:32,155 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 22:58:32,164 INFO [decode.py:757] num_arcs after pruning: 5472
2022-04-08 22:59:15,988 INFO [decode.py:497] batch 2100/?, cuts processed until now is 4981
2022-04-08 23:00:31,937 INFO [decode.py:736] Caught exception:

    Some bad things happened. Please read the above error messages and stack
    trace. If you are using Python, the following command may be helpful:

      gdb --args python /path/to/your/code.py

    (You can use `gdb` to debug the code. Please consider compiling
    a debug version of k2.).

    If you are unable to fix it, please open an issue at:

      https://github.com/k2-fsa/k2/issues/new
    

2022-04-08 23:00:31,937 INFO [decode.py:743] num_arcs before pruning: 745182
2022-04-08 23:00:31,937 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 23:00:31,989 INFO [decode.py:757] num_arcs after pruning: 13933
2022-04-08 23:01:49,408 INFO [decode.py:497] batch 2200/?, cuts processed until now is 5132
2022-04-08 23:04:08,911 INFO [decode.py:497] batch 2300/?, cuts processed until now is 5273
2022-04-08 23:06:50,854 INFO [decode.py:497] batch 2400/?, cuts processed until now is 5388
2022-04-08 23:06:53,493 INFO [decode.py:736] Caught exception:

    Some bad things happened. Please read the above error messages and stack
    trace. If you are using Python, the following command may be helpful:

      gdb --args python /path/to/your/code.py

    (You can use `gdb` to debug the code. Please consider compiling
    a debug version of k2.).

    If you are unable to fix it, please open an issue at:

      https://github.com/k2-fsa/k2/issues/new
    

2022-04-08 23:06:53,493 INFO [decode.py:743] num_arcs before pruning: 203946
2022-04-08 23:06:53,493 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 23:06:53,545 INFO [decode.py:757] num_arcs after pruning: 7172
2022-04-08 23:09:08,764 INFO [decode.py:497] batch 2500/?, cuts processed until now is 5488
2022-04-08 23:10:26,345 INFO [decode.py:841] Caught exception:
CUDA out of memory. Tried to allocate 5.79 GiB (GPU 0; 31.75 GiB total capacity; 24.31 GiB already allocated; 1.58 GiB free; 28.82 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

2022-04-08 23:10:26,346 INFO [decode.py:843] num_paths before decreasing: 1000
2022-04-08 23:10:26,346 INFO [decode.py:852] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
2022-04-08 23:10:26,346 INFO [decode.py:858] num_paths after decreasing: 500
2022-04-08 23:11:31,973 INFO [decode.py:497] batch 2600/?, cuts processed until now is 5588
2022-04-08 23:13:41,208 INFO [decode.py:497] batch 2700/?, cuts processed until now is 5688
2022-04-08 23:20:49,158 INFO [decode.py:567] 
For dev, WER of different settings are:
ngram_lm_scale_0.6_attention_scale_1.5	10.46	best for dev
ngram_lm_scale_0.6_attention_scale_1.7	10.46
ngram_lm_scale_0.5_attention_scale_0.9	10.47
ngram_lm_scale_0.5_attention_scale_1.0	10.47
ngram_lm_scale_0.5_attention_scale_1.1	10.47
ngram_lm_scale_0.5_attention_scale_1.2	10.47
ngram_lm_scale_0.5_attention_scale_1.3	10.47
ngram_lm_scale_0.5_attention_scale_1.5	10.47
ngram_lm_scale_0.5_attention_scale_1.7	10.47
ngram_lm_scale_0.6_attention_scale_1.3	10.47
ngram_lm_scale_0.6_attention_scale_1.9	10.47
ngram_lm_scale_0.6_attention_scale_2.0	10.47
ngram_lm_scale_0.6_attention_scale_2.1	10.47
ngram_lm_scale_0.7_attention_scale_1.9	10.47
ngram_lm_scale_0.7_attention_scale_2.0	10.47
ngram_lm_scale_0.7_attention_scale_2.1	10.47
ngram_lm_scale_0.7_attention_scale_2.2	10.47
ngram_lm_scale_0.5_attention_scale_1.9	10.48
ngram_lm_scale_0.6_attention_scale_1.1	10.48
ngram_lm_scale_0.6_attention_scale_1.2	10.48
ngram_lm_scale_0.6_attention_scale_2.2	10.48
ngram_lm_scale_0.6_attention_scale_2.3	10.48
ngram_lm_scale_0.7_attention_scale_1.5	10.48
ngram_lm_scale_0.7_attention_scale_1.7	10.48
ngram_lm_scale_0.7_attention_scale_2.3	10.48
ngram_lm_scale_0.7_attention_scale_2.5	10.48
ngram_lm_scale_0.9_attention_scale_4.0	10.48
ngram_lm_scale_0.3_attention_scale_1.1	10.49
ngram_lm_scale_0.5_attention_scale_0.6	10.49
ngram_lm_scale_0.5_attention_scale_0.7	10.49
ngram_lm_scale_0.5_attention_scale_2.0	10.49
ngram_lm_scale_0.5_attention_scale_2.1	10.49
ngram_lm_scale_0.5_attention_scale_2.5	10.49
ngram_lm_scale_0.5_attention_scale_3.0	10.49
ngram_lm_scale_0.6_attention_scale_1.0	10.49
ngram_lm_scale_0.6_attention_scale_2.5	10.49
ngram_lm_scale_0.6_attention_scale_3.0	10.49
ngram_lm_scale_0.7_attention_scale_1.3	10.49
ngram_lm_scale_0.7_attention_scale_3.0	10.49
ngram_lm_scale_0.7_attention_scale_4.0	10.49
ngram_lm_scale_0.9_attention_scale_3.0	10.49
ngram_lm_scale_0.9_attention_scale_5.0	10.49
ngram_lm_scale_1.0_attention_scale_4.0	10.49
ngram_lm_scale_1.0_attention_scale_5.0	10.49
ngram_lm_scale_1.1_attention_scale_4.0	10.49
ngram_lm_scale_1.1_attention_scale_5.0	10.49
ngram_lm_scale_1.2_attention_scale_4.0	10.49
ngram_lm_scale_1.2_attention_scale_5.0	10.49
ngram_lm_scale_1.3_attention_scale_5.0	10.49
ngram_lm_scale_1.5_attention_scale_5.0	10.49
ngram_lm_scale_0.3_attention_scale_0.7	10.5
ngram_lm_scale_0.3_attention_scale_0.9	10.5
ngram_lm_scale_0.3_attention_scale_1.0	10.5
ngram_lm_scale_0.3_attention_scale_1.2	10.5
ngram_lm_scale_0.3_attention_scale_1.3	10.5
ngram_lm_scale_0.3_attention_scale_1.5	10.5
ngram_lm_scale_0.5_attention_scale_2.2	10.5
ngram_lm_scale_0.5_attention_scale_2.3	10.5
ngram_lm_scale_0.6_attention_scale_0.7	10.5
ngram_lm_scale_0.6_attention_scale_0.9	10.5
ngram_lm_scale_0.7_attention_scale_1.0	10.5
ngram_lm_scale_0.7_attention_scale_1.1	10.5
ngram_lm_scale_0.7_attention_scale_5.0	10.5
ngram_lm_scale_0.9_attention_scale_2.1	10.5
ngram_lm_scale_1.0_attention_scale_3.0	10.5
ngram_lm_scale_1.3_attention_scale_4.0	10.5
ngram_lm_scale_1.5_attention_scale_4.0	10.5
ngram_lm_scale_0.3_attention_scale_1.7	10.51
ngram_lm_scale_0.3_attention_scale_1.9	10.51
ngram_lm_scale_0.3_attention_scale_2.0	10.51
ngram_lm_scale_0.3_attention_scale_2.1	10.51
ngram_lm_scale_0.3_attention_scale_2.2	10.51
ngram_lm_scale_0.3_attention_scale_2.3	10.51
ngram_lm_scale_0.3_attention_scale_2.5	10.51
ngram_lm_scale_0.3_attention_scale_3.0	10.51
ngram_lm_scale_0.3_attention_scale_4.0	10.51
ngram_lm_scale_0.5_attention_scale_0.5	10.51
ngram_lm_scale_0.5_attention_scale_4.0	10.51
ngram_lm_scale_0.5_attention_scale_5.0	10.51
ngram_lm_scale_0.6_attention_scale_4.0	10.51
ngram_lm_scale_0.6_attention_scale_5.0	10.51
ngram_lm_scale_0.7_attention_scale_1.2	10.51
ngram_lm_scale_0.9_attention_scale_2.0	10.51
ngram_lm_scale_0.9_attention_scale_2.2	10.51
ngram_lm_scale_0.9_attention_scale_2.3	10.51
ngram_lm_scale_0.9_attention_scale_2.5	10.51
ngram_lm_scale_1.0_attention_scale_2.2	10.51
ngram_lm_scale_1.0_attention_scale_2.3	10.51
ngram_lm_scale_1.0_attention_scale_2.5	10.51
ngram_lm_scale_1.1_attention_scale_2.5	10.51
ngram_lm_scale_1.2_attention_scale_3.0	10.51
ngram_lm_scale_1.7_attention_scale_5.0	10.51
ngram_lm_scale_0.05_attention_scale_2.5	10.52
ngram_lm_scale_0.05_attention_scale_3.0	10.52
ngram_lm_scale_0.08_attention_scale_2.5	10.52
ngram_lm_scale_0.08_attention_scale_4.0	10.52
ngram_lm_scale_0.08_attention_scale_5.0	10.52
ngram_lm_scale_0.1_attention_scale_2.5	10.52
ngram_lm_scale_0.1_attention_scale_3.0	10.52
ngram_lm_scale_0.1_attention_scale_4.0	10.52
ngram_lm_scale_0.1_attention_scale_5.0	10.52
ngram_lm_scale_0.3_attention_scale_0.5	10.52
ngram_lm_scale_0.3_attention_scale_0.6	10.52
ngram_lm_scale_0.3_attention_scale_5.0	10.52
ngram_lm_scale_0.6_attention_scale_0.6	10.52
ngram_lm_scale_0.7_attention_scale_0.9	10.52
ngram_lm_scale_0.9_attention_scale_1.7	10.52
ngram_lm_scale_0.9_attention_scale_1.9	10.52
ngram_lm_scale_1.0_attention_scale_2.0	10.52
ngram_lm_scale_1.0_attention_scale_2.1	10.52
ngram_lm_scale_1.1_attention_scale_2.3	10.52
ngram_lm_scale_1.1_attention_scale_3.0	10.52
ngram_lm_scale_1.9_attention_scale_5.0	10.52
ngram_lm_scale_0.01_attention_scale_2.5	10.53
ngram_lm_scale_0.01_attention_scale_3.0	10.53
ngram_lm_scale_0.01_attention_scale_4.0	10.53
ngram_lm_scale_0.01_attention_scale_5.0	10.53
ngram_lm_scale_0.05_attention_scale_1.9	10.53
ngram_lm_scale_0.05_attention_scale_2.1	10.53
ngram_lm_scale_0.05_attention_scale_2.3	10.53
ngram_lm_scale_0.05_attention_scale_4.0	10.53
ngram_lm_scale_0.05_attention_scale_5.0	10.53
ngram_lm_scale_0.08_attention_scale_1.9	10.53
ngram_lm_scale_0.08_attention_scale_2.1	10.53
ngram_lm_scale_0.08_attention_scale_2.2	10.53
ngram_lm_scale_0.08_attention_scale_2.3	10.53
ngram_lm_scale_0.08_attention_scale_3.0	10.53
ngram_lm_scale_0.1_attention_scale_2.2	10.53
ngram_lm_scale_0.1_attention_scale_2.3	10.53
ngram_lm_scale_0.3_attention_scale_0.3	10.53
ngram_lm_scale_0.9_attention_scale_1.5	10.53
ngram_lm_scale_1.0_attention_scale_1.9	10.53
ngram_lm_scale_1.1_attention_scale_2.1	10.53
ngram_lm_scale_1.1_attention_scale_2.2	10.53
ngram_lm_scale_1.2_attention_scale_2.5	10.53
ngram_lm_scale_1.3_attention_scale_3.0	10.53
ngram_lm_scale_1.7_attention_scale_4.0	10.53
ngram_lm_scale_2.0_attention_scale_5.0	10.53
ngram_lm_scale_0.01_attention_scale_2.2	10.54
ngram_lm_scale_0.01_attention_scale_2.3	10.54
ngram_lm_scale_0.05_attention_scale_1.7	10.54
ngram_lm_scale_0.05_attention_scale_2.0	10.54
ngram_lm_scale_0.05_attention_scale_2.2	10.54
ngram_lm_scale_0.08_attention_scale_1.2	10.54
ngram_lm_scale_0.08_attention_scale_1.3	10.54
ngram_lm_scale_0.08_attention_scale_1.7	10.54
ngram_lm_scale_0.08_attention_scale_2.0	10.54
ngram_lm_scale_0.1_attention_scale_1.5	10.54
ngram_lm_scale_0.1_attention_scale_1.7	10.54
ngram_lm_scale_0.1_attention_scale_1.9	10.54
ngram_lm_scale_0.1_attention_scale_2.0	10.54
ngram_lm_scale_0.1_attention_scale_2.1	10.54
ngram_lm_scale_0.9_attention_scale_1.2	10.54
ngram_lm_scale_1.0_attention_scale_1.7	10.54
ngram_lm_scale_1.2_attention_scale_2.3	10.54
ngram_lm_scale_1.3_attention_scale_2.3	10.54
ngram_lm_scale_1.5_attention_scale_3.0	10.54
ngram_lm_scale_0.01_attention_scale_1.9	10.55
ngram_lm_scale_0.01_attention_scale_2.0	10.55
ngram_lm_scale_0.01_attention_scale_2.1	10.55
ngram_lm_scale_0.05_attention_scale_1.2	10.55
ngram_lm_scale_0.05_attention_scale_1.3	10.55
ngram_lm_scale_0.08_attention_scale_1.1	10.55
ngram_lm_scale_0.08_attention_scale_1.5	10.55
ngram_lm_scale_0.1_attention_scale_1.1	10.55
ngram_lm_scale_0.1_attention_scale_1.2	10.55
ngram_lm_scale_0.1_attention_scale_1.3	10.55
ngram_lm_scale_0.6_attention_scale_0.5	10.55
ngram_lm_scale_0.7_attention_scale_0.7	10.55
ngram_lm_scale_0.9_attention_scale_1.3	10.55
ngram_lm_scale_1.0_attention_scale_1.5	10.55
ngram_lm_scale_1.1_attention_scale_2.0	10.55
ngram_lm_scale_1.2_attention_scale_2.0	10.55
ngram_lm_scale_1.2_attention_scale_2.1	10.55
ngram_lm_scale_1.2_attention_scale_2.2	10.55
ngram_lm_scale_1.3_attention_scale_2.2	10.55
ngram_lm_scale_1.3_attention_scale_2.5	10.55
ngram_lm_scale_2.1_attention_scale_5.0	10.55
ngram_lm_scale_0.01_attention_scale_1.1	10.56
ngram_lm_scale_0.01_attention_scale_1.3	10.56
ngram_lm_scale_0.01_attention_scale_1.7	10.56
ngram_lm_scale_0.05_attention_scale_1.1	10.56
ngram_lm_scale_0.05_attention_scale_1.5	10.56
ngram_lm_scale_0.08_attention_scale_1.0	10.56
ngram_lm_scale_0.1_attention_scale_1.0	10.56
ngram_lm_scale_0.7_attention_scale_0.6	10.56
ngram_lm_scale_0.9_attention_scale_1.1	10.56
ngram_lm_scale_1.0_attention_scale_1.3	10.56
ngram_lm_scale_1.1_attention_scale_1.7	10.56
ngram_lm_scale_1.1_attention_scale_1.9	10.56
ngram_lm_scale_1.2_attention_scale_1.9	10.56
ngram_lm_scale_1.3_attention_scale_2.0	10.56
ngram_lm_scale_1.9_attention_scale_4.0	10.56
ngram_lm_scale_2.2_attention_scale_5.0	10.56
ngram_lm_scale_0.01_attention_scale_1.2	10.57
ngram_lm_scale_0.01_attention_scale_1.5	10.57
ngram_lm_scale_0.05_attention_scale_1.0	10.57
ngram_lm_scale_0.1_attention_scale_0.5	10.57
ngram_lm_scale_0.1_attention_scale_0.7	10.57
ngram_lm_scale_0.1_attention_scale_0.9	10.57
ngram_lm_scale_0.5_attention_scale_0.3	10.57
ngram_lm_scale_0.9_attention_scale_1.0	10.57
ngram_lm_scale_1.1_attention_scale_1.5	10.57
ngram_lm_scale_1.2_attention_scale_1.7	10.57
ngram_lm_scale_1.3_attention_scale_2.1	10.57
ngram_lm_scale_0.01_attention_scale_1.0	10.58
ngram_lm_scale_0.05_attention_scale_0.9	10.58
ngram_lm_scale_0.08_attention_scale_0.7	10.58
ngram_lm_scale_0.08_attention_scale_0.9	10.58
ngram_lm_scale_0.1_attention_scale_0.6	10.58
ngram_lm_scale_0.3_attention_scale_0.1	10.58
ngram_lm_scale_0.9_attention_scale_0.9	10.58
ngram_lm_scale_1.0_attention_scale_1.2	10.58
ngram_lm_scale_1.3_attention_scale_1.9	10.58
ngram_lm_scale_1.5_attention_scale_2.5	10.58
ngram_lm_scale_2.0_attention_scale_4.0	10.58
ngram_lm_scale_0.01_attention_scale_0.9	10.59
ngram_lm_scale_0.08_attention_scale_0.5	10.59
ngram_lm_scale_0.08_attention_scale_0.6	10.59
ngram_lm_scale_0.1_attention_scale_0.3	10.59
ngram_lm_scale_0.3_attention_scale_0.08	10.59
ngram_lm_scale_0.6_attention_scale_0.3	10.59
ngram_lm_scale_0.7_attention_scale_0.5	10.59
ngram_lm_scale_1.7_attention_scale_3.0	10.59
ngram_lm_scale_2.3_attention_scale_5.0	10.59
ngram_lm_scale_0.05_attention_scale_0.6	10.6
ngram_lm_scale_0.05_attention_scale_0.7	10.6
ngram_lm_scale_0.08_attention_scale_0.3	10.6
ngram_lm_scale_0.3_attention_scale_0.05	10.6
ngram_lm_scale_1.0_attention_scale_1.1	10.6
ngram_lm_scale_1.1_attention_scale_1.3	10.6
ngram_lm_scale_1.2_attention_scale_1.5	10.6
ngram_lm_scale_1.5_attention_scale_2.3	10.6
ngram_lm_scale_0.01_attention_scale_0.7	10.61
ngram_lm_scale_1.3_attention_scale_1.7	10.61
ngram_lm_scale_0.01_attention_scale_0.6	10.62
ngram_lm_scale_0.05_attention_scale_0.3	10.62
ngram_lm_scale_0.05_attention_scale_0.5	10.62
ngram_lm_scale_0.1_attention_scale_0.1	10.62
ngram_lm_scale_2.1_attention_scale_4.0	10.62
ngram_lm_scale_0.01_attention_scale_0.5	10.63
ngram_lm_scale_1.0_attention_scale_1.0	10.63
ngram_lm_scale_1.5_attention_scale_2.2	10.63
ngram_lm_scale_2.5_attention_scale_5.0	10.63
ngram_lm_scale_0.08_attention_scale_0.1	10.64
ngram_lm_scale_0.1_attention_scale_0.08	10.64
ngram_lm_scale_0.3_attention_scale_0.01	10.64
ngram_lm_scale_1.1_attention_scale_1.2	10.64
ngram_lm_scale_0.01_attention_scale_0.3	10.65
ngram_lm_scale_0.5_attention_scale_0.1	10.65
ngram_lm_scale_0.7_attention_scale_0.3	10.65
ngram_lm_scale_1.5_attention_scale_2.1	10.65
ngram_lm_scale_0.08_attention_scale_0.08	10.66
ngram_lm_scale_0.1_attention_scale_0.05	10.66
ngram_lm_scale_0.5_attention_scale_0.08	10.66
ngram_lm_scale_0.9_attention_scale_0.7	10.66
ngram_lm_scale_2.2_attention_scale_4.0	10.66
ngram_lm_scale_0.1_attention_scale_0.01	10.67
ngram_lm_scale_1.0_attention_scale_0.9	10.67
ngram_lm_scale_1.1_attention_scale_1.1	10.67
ngram_lm_scale_1.7_attention_scale_2.5	10.67
ngram_lm_scale_0.05_attention_scale_0.1	10.68
ngram_lm_scale_0.5_attention_scale_0.05	10.68
ngram_lm_scale_1.5_attention_scale_2.0	10.68
ngram_lm_scale_0.05_attention_scale_0.08	10.69
ngram_lm_scale_0.08_attention_scale_0.05	10.69
ngram_lm_scale_1.2_attention_scale_1.3	10.69
ngram_lm_scale_1.9_attention_scale_3.0	10.69
ngram_lm_scale_0.08_attention_scale_0.01	10.7
ngram_lm_scale_0.6_attention_scale_0.1	10.7
ngram_lm_scale_1.3_attention_scale_1.5	10.7
ngram_lm_scale_2.3_attention_scale_4.0	10.7
ngram_lm_scale_0.05_attention_scale_0.05	10.71
ngram_lm_scale_0.5_attention_scale_0.01	10.71
ngram_lm_scale_0.9_attention_scale_0.6	10.71
ngram_lm_scale_1.1_attention_scale_1.0	10.71
ngram_lm_scale_1.5_attention_scale_1.9	10.71
ngram_lm_scale_0.01_attention_scale_0.1	10.72
ngram_lm_scale_0.01_attention_scale_0.08	10.73
ngram_lm_scale_0.05_attention_scale_0.01	10.73
ngram_lm_scale_0.6_attention_scale_0.08	10.73
ngram_lm_scale_1.2_attention_scale_1.2	10.73
ngram_lm_scale_0.01_attention_scale_0.05	10.75
ngram_lm_scale_0.9_attention_scale_0.5	10.75
ngram_lm_scale_1.0_attention_scale_0.7	10.75
ngram_lm_scale_1.1_attention_scale_0.9	10.75
ngram_lm_scale_1.2_attention_scale_1.1	10.75
ngram_lm_scale_1.3_attention_scale_1.3	10.76
ngram_lm_scale_1.7_attention_scale_2.3	10.76
ngram_lm_scale_2.0_attention_scale_3.0	10.77
ngram_lm_scale_0.6_attention_scale_0.05	10.78
ngram_lm_scale_0.01_attention_scale_0.01	10.79
ngram_lm_scale_1.5_attention_scale_1.7	10.79
ngram_lm_scale_1.7_attention_scale_2.2	10.79
ngram_lm_scale_1.2_attention_scale_1.0	10.8
ngram_lm_scale_1.3_attention_scale_1.2	10.8
ngram_lm_scale_2.5_attention_scale_4.0	10.81
ngram_lm_scale_1.7_attention_scale_2.1	10.82
ngram_lm_scale_1.0_attention_scale_0.6	10.83
ngram_lm_scale_2.1_attention_scale_3.0	10.84
ngram_lm_scale_0.6_attention_scale_0.01	10.85
ngram_lm_scale_1.7_attention_scale_2.0	10.85
ngram_lm_scale_1.9_attention_scale_2.5	10.85
ngram_lm_scale_3.0_attention_scale_5.0	10.86
ngram_lm_scale_1.3_attention_scale_1.1	10.87
ngram_lm_scale_0.7_attention_scale_0.1	10.88
ngram_lm_scale_1.5_attention_scale_1.5	10.88
ngram_lm_scale_1.2_attention_scale_0.9	10.89
ngram_lm_scale_1.7_attention_scale_1.9	10.89
ngram_lm_scale_2.2_attention_scale_3.0	10.9
ngram_lm_scale_1.1_attention_scale_0.7	10.91
ngram_lm_scale_1.9_attention_scale_2.3	10.91
ngram_lm_scale_2.0_attention_scale_2.5	10.91
ngram_lm_scale_0.7_attention_scale_0.08	10.92
ngram_lm_scale_0.7_attention_scale_0.05	10.96
ngram_lm_scale_1.0_attention_scale_0.5	10.96
ngram_lm_scale_1.9_attention_scale_2.2	10.97
ngram_lm_scale_2.3_attention_scale_3.0	10.97
ngram_lm_scale_1.3_attention_scale_1.0	10.99
ngram_lm_scale_1.7_attention_scale_1.7	11.01
ngram_lm_scale_2.1_attention_scale_2.5	11.02
ngram_lm_scale_0.9_attention_scale_0.3	11.03
ngram_lm_scale_1.9_attention_scale_2.1	11.03
ngram_lm_scale_0.7_attention_scale_0.01	11.04
ngram_lm_scale_1.5_attention_scale_1.3	11.04
ngram_lm_scale_2.0_attention_scale_2.3	11.04
ngram_lm_scale_1.1_attention_scale_0.6	11.05
ngram_lm_scale_1.9_attention_scale_2.0	11.1
ngram_lm_scale_2.0_attention_scale_2.2	11.1
ngram_lm_scale_1.3_attention_scale_0.9	11.11
ngram_lm_scale_1.2_attention_scale_0.7	11.14
ngram_lm_scale_1.5_attention_scale_1.2	11.15
ngram_lm_scale_2.2_attention_scale_2.5	11.16
ngram_lm_scale_2.1_attention_scale_2.3	11.17
ngram_lm_scale_3.0_attention_scale_4.0	11.17
ngram_lm_scale_1.9_attention_scale_1.9	11.18
ngram_lm_scale_2.0_attention_scale_2.1	11.18
ngram_lm_scale_1.1_attention_scale_0.5	11.19
ngram_lm_scale_2.5_attention_scale_3.0	11.19
ngram_lm_scale_1.7_attention_scale_1.5	11.21
ngram_lm_scale_2.1_attention_scale_2.2	11.25
ngram_lm_scale_1.2_attention_scale_0.6	11.26
ngram_lm_scale_1.5_attention_scale_1.1	11.26
ngram_lm_scale_2.0_attention_scale_2.0	11.26
ngram_lm_scale_1.0_attention_scale_0.3	11.29
ngram_lm_scale_2.3_attention_scale_2.5	11.3
ngram_lm_scale_2.2_attention_scale_2.3	11.31
ngram_lm_scale_2.1_attention_scale_2.1	11.32
ngram_lm_scale_2.0_attention_scale_1.9	11.34
ngram_lm_scale_1.3_attention_scale_0.7	11.36
ngram_lm_scale_1.9_attention_scale_1.7	11.37
ngram_lm_scale_1.5_attention_scale_1.0	11.4
ngram_lm_scale_2.2_attention_scale_2.2	11.4
ngram_lm_scale_2.1_attention_scale_2.0	11.41
ngram_lm_scale_0.9_attention_scale_0.1	11.42
ngram_lm_scale_1.7_attention_scale_1.3	11.44
ngram_lm_scale_1.2_attention_scale_0.5	11.45
ngram_lm_scale_0.9_attention_scale_0.08	11.47
ngram_lm_scale_2.3_attention_scale_2.3	11.48
ngram_lm_scale_2.2_attention_scale_2.1	11.51
ngram_lm_scale_2.1_attention_scale_1.9	11.54
ngram_lm_scale_1.3_attention_scale_0.6	11.55
ngram_lm_scale_1.5_attention_scale_0.9	11.56
ngram_lm_scale_0.9_attention_scale_0.05	11.57
ngram_lm_scale_2.0_attention_scale_1.7	11.57
ngram_lm_scale_2.3_attention_scale_2.2	11.58
ngram_lm_scale_1.1_attention_scale_0.3	11.59
ngram_lm_scale_1.7_attention_scale_1.2	11.59
ngram_lm_scale_1.9_attention_scale_1.5	11.63
ngram_lm_scale_2.2_attention_scale_2.0	11.63
ngram_lm_scale_2.5_attention_scale_2.5	11.63
ngram_lm_scale_4.0_attention_scale_5.0	11.67
ngram_lm_scale_2.3_attention_scale_2.1	11.7
ngram_lm_scale_0.9_attention_scale_0.01	11.71
ngram_lm_scale_2.2_attention_scale_1.9	11.73
ngram_lm_scale_1.3_attention_scale_0.5	11.76
ngram_lm_scale_1.7_attention_scale_1.1	11.76
ngram_lm_scale_1.0_attention_scale_0.1	11.78
ngram_lm_scale_2.1_attention_scale_1.7	11.8
ngram_lm_scale_2.3_attention_scale_2.0	11.8
ngram_lm_scale_2.5_attention_scale_2.3	11.83
ngram_lm_scale_2.0_attention_scale_1.5	11.86
ngram_lm_scale_1.0_attention_scale_0.08	11.89
ngram_lm_scale_1.9_attention_scale_1.3	11.93
ngram_lm_scale_3.0_attention_scale_3.0	11.94
ngram_lm_scale_1.2_attention_scale_0.3	11.95
ngram_lm_scale_1.7_attention_scale_1.0	11.95
ngram_lm_scale_2.3_attention_scale_1.9	11.95
ngram_lm_scale_2.5_attention_scale_2.2	11.96
ngram_lm_scale_1.5_attention_scale_0.7	11.98
ngram_lm_scale_1.0_attention_scale_0.05	12.0
ngram_lm_scale_2.2_attention_scale_1.7	12.02
ngram_lm_scale_2.1_attention_scale_1.5	12.09
ngram_lm_scale_2.5_attention_scale_2.1	12.09
ngram_lm_scale_1.9_attention_scale_1.2	12.12
ngram_lm_scale_1.7_attention_scale_0.9	12.16
ngram_lm_scale_1.0_attention_scale_0.01	12.19
ngram_lm_scale_2.0_attention_scale_1.3	12.2
ngram_lm_scale_2.5_attention_scale_2.0	12.22
ngram_lm_scale_1.5_attention_scale_0.6	12.24
ngram_lm_scale_2.3_attention_scale_1.7	12.24
ngram_lm_scale_1.1_attention_scale_0.1	12.27
ngram_lm_scale_1.9_attention_scale_1.1	12.3
ngram_lm_scale_4.0_attention_scale_4.0	12.31
ngram_lm_scale_2.2_attention_scale_1.5	12.32
ngram_lm_scale_2.5_attention_scale_1.9	12.35
ngram_lm_scale_1.1_attention_scale_0.08	12.36
ngram_lm_scale_2.0_attention_scale_1.2	12.37
ngram_lm_scale_1.3_attention_scale_0.3	12.4
ngram_lm_scale_2.1_attention_scale_1.3	12.43
ngram_lm_scale_3.0_attention_scale_2.5	12.46
ngram_lm_scale_1.1_attention_scale_0.05	12.51
ngram_lm_scale_1.9_attention_scale_1.0	12.52
ngram_lm_scale_2.3_attention_scale_1.5	12.53
ngram_lm_scale_1.5_attention_scale_0.5	12.54
ngram_lm_scale_2.0_attention_scale_1.1	12.58
ngram_lm_scale_5.0_attention_scale_5.0	12.62
ngram_lm_scale_2.1_attention_scale_1.2	12.63
ngram_lm_scale_2.5_attention_scale_1.7	12.64
ngram_lm_scale_1.7_attention_scale_0.7	12.68
ngram_lm_scale_2.2_attention_scale_1.3	12.68
ngram_lm_scale_1.1_attention_scale_0.01	12.72
ngram_lm_scale_3.0_attention_scale_2.3	12.72
ngram_lm_scale_1.9_attention_scale_0.9	12.78
ngram_lm_scale_1.2_attention_scale_0.1	12.79
ngram_lm_scale_2.0_attention_scale_1.0	12.82
ngram_lm_scale_2.1_attention_scale_1.1	12.86
ngram_lm_scale_3.0_attention_scale_2.2	12.87
ngram_lm_scale_1.2_attention_scale_0.08	12.88
ngram_lm_scale_2.2_attention_scale_1.2	12.92
ngram_lm_scale_2.3_attention_scale_1.3	12.97
ngram_lm_scale_1.7_attention_scale_0.6	12.98
ngram_lm_scale_3.0_attention_scale_2.1	13.03
ngram_lm_scale_2.5_attention_scale_1.5	13.04
ngram_lm_scale_1.2_attention_scale_0.05	13.05
ngram_lm_scale_2.0_attention_scale_0.9	13.11
ngram_lm_scale_2.1_attention_scale_1.0	13.17
ngram_lm_scale_2.2_attention_scale_1.1	13.2
ngram_lm_scale_3.0_attention_scale_2.0	13.2
ngram_lm_scale_2.3_attention_scale_1.2	13.24
ngram_lm_scale_1.2_attention_scale_0.01	13.27
ngram_lm_scale_1.3_attention_scale_0.1	13.3
ngram_lm_scale_1.5_attention_scale_0.3	13.32
ngram_lm_scale_1.7_attention_scale_0.5	13.33
ngram_lm_scale_1.3_attention_scale_0.08	13.4
ngram_lm_scale_4.0_attention_scale_3.0	13.41
ngram_lm_scale_1.9_attention_scale_0.7	13.42
ngram_lm_scale_3.0_attention_scale_1.9	13.42
ngram_lm_scale_2.1_attention_scale_0.9	13.45
ngram_lm_scale_2.2_attention_scale_1.0	13.46
ngram_lm_scale_2.3_attention_scale_1.1	13.47
ngram_lm_scale_2.5_attention_scale_1.3	13.53
ngram_lm_scale_1.3_attention_scale_0.05	13.56
ngram_lm_scale_5.0_attention_scale_4.0	13.57
ngram_lm_scale_2.0_attention_scale_0.7	13.73
ngram_lm_scale_2.2_attention_scale_0.9	13.74
ngram_lm_scale_1.9_attention_scale_0.6	13.75
ngram_lm_scale_2.3_attention_scale_1.0	13.75
ngram_lm_scale_2.5_attention_scale_1.2	13.78
ngram_lm_scale_1.3_attention_scale_0.01	13.81
ngram_lm_scale_3.0_attention_scale_1.7	13.84
ngram_lm_scale_2.5_attention_scale_1.1	14.05
ngram_lm_scale_2.1_attention_scale_0.7	14.07
ngram_lm_scale_2.3_attention_scale_0.9	14.07
ngram_lm_scale_2.0_attention_scale_0.6	14.1
ngram_lm_scale_1.9_attention_scale_0.5	14.14
ngram_lm_scale_1.7_attention_scale_0.3	14.18
ngram_lm_scale_4.0_attention_scale_2.5	14.2
ngram_lm_scale_3.0_attention_scale_1.5	14.28
ngram_lm_scale_1.5_attention_scale_0.1	14.3
ngram_lm_scale_2.5_attention_scale_1.0	14.35
ngram_lm_scale_1.5_attention_scale_0.08	14.41
ngram_lm_scale_2.2_attention_scale_0.7	14.42
ngram_lm_scale_2.1_attention_scale_0.6	14.47
ngram_lm_scale_2.0_attention_scale_0.5	14.51
ngram_lm_scale_4.0_attention_scale_2.3	14.56
ngram_lm_scale_1.5_attention_scale_0.05	14.57
ngram_lm_scale_2.5_attention_scale_0.9	14.66
ngram_lm_scale_2.3_attention_scale_0.7	14.72
ngram_lm_scale_4.0_attention_scale_2.2	14.75
ngram_lm_scale_2.2_attention_scale_0.6	14.76
ngram_lm_scale_3.0_attention_scale_1.3	14.76
ngram_lm_scale_2.1_attention_scale_0.5	14.8
ngram_lm_scale_1.5_attention_scale_0.01	14.82
ngram_lm_scale_5.0_attention_scale_3.0	14.84
ngram_lm_scale_4.0_attention_scale_2.1	14.9
ngram_lm_scale_1.9_attention_scale_0.3	14.93
ngram_lm_scale_3.0_attention_scale_1.2	14.98
ngram_lm_scale_2.3_attention_scale_0.6	15.04
ngram_lm_scale_4.0_attention_scale_2.0	15.07
ngram_lm_scale_2.2_attention_scale_0.5	15.13
ngram_lm_scale_1.7_attention_scale_0.1	15.2
ngram_lm_scale_3.0_attention_scale_1.1	15.24
ngram_lm_scale_4.0_attention_scale_1.9	15.25
ngram_lm_scale_2.5_attention_scale_0.7	15.26
ngram_lm_scale_1.7_attention_scale_0.08	15.3
ngram_lm_scale_2.0_attention_scale_0.3	15.31
ngram_lm_scale_2.3_attention_scale_0.5	15.41
ngram_lm_scale_1.7_attention_scale_0.05	15.48
ngram_lm_scale_3.0_attention_scale_1.0	15.54
ngram_lm_scale_2.5_attention_scale_0.6	15.59
ngram_lm_scale_5.0_attention_scale_2.5	15.61
ngram_lm_scale_2.1_attention_scale_0.3	15.62
ngram_lm_scale_4.0_attention_scale_1.7	15.66
ngram_lm_scale_1.7_attention_scale_0.01	15.73
ngram_lm_scale_3.0_attention_scale_0.9	15.8
ngram_lm_scale_5.0_attention_scale_2.3	15.9
ngram_lm_scale_1.9_attention_scale_0.1	15.91
ngram_lm_scale_2.2_attention_scale_0.3	15.93
ngram_lm_scale_2.5_attention_scale_0.5	15.96
ngram_lm_scale_1.9_attention_scale_0.08	16.02
ngram_lm_scale_4.0_attention_scale_1.5	16.04
ngram_lm_scale_5.0_attention_scale_2.2	16.04
ngram_lm_scale_1.9_attention_scale_0.05	16.18
ngram_lm_scale_5.0_attention_scale_2.1	16.2
ngram_lm_scale_2.3_attention_scale_0.3	16.21
ngram_lm_scale_2.0_attention_scale_0.1	16.25
ngram_lm_scale_3.0_attention_scale_0.7	16.34
ngram_lm_scale_2.0_attention_scale_0.08	16.35
ngram_lm_scale_5.0_attention_scale_2.0	16.37
ngram_lm_scale_1.9_attention_scale_0.01	16.42
ngram_lm_scale_4.0_attention_scale_1.3	16.45
ngram_lm_scale_2.0_attention_scale_0.05	16.5
ngram_lm_scale_5.0_attention_scale_1.9	16.52
ngram_lm_scale_2.1_attention_scale_0.1	16.55
ngram_lm_scale_4.0_attention_scale_1.2	16.62
ngram_lm_scale_2.1_attention_scale_0.08	16.64
ngram_lm_scale_3.0_attention_scale_0.6	16.64
ngram_lm_scale_2.5_attention_scale_0.3	16.67
ngram_lm_scale_2.0_attention_scale_0.01	16.71
ngram_lm_scale_2.1_attention_scale_0.05	16.77
ngram_lm_scale_2.2_attention_scale_0.1	16.8
ngram_lm_scale_5.0_attention_scale_1.7	16.82
ngram_lm_scale_4.0_attention_scale_1.1	16.84
ngram_lm_scale_2.2_attention_scale_0.08	16.89
ngram_lm_scale_3.0_attention_scale_0.5	16.95
ngram_lm_scale_2.1_attention_scale_0.01	16.99
ngram_lm_scale_2.2_attention_scale_0.05	17.02
ngram_lm_scale_2.3_attention_scale_0.1	17.02
ngram_lm_scale_4.0_attention_scale_1.0	17.07
ngram_lm_scale_2.3_attention_scale_0.08	17.09
ngram_lm_scale_5.0_attention_scale_1.5	17.16
ngram_lm_scale_2.2_attention_scale_0.01	17.18
ngram_lm_scale_2.3_attention_scale_0.05	17.2
ngram_lm_scale_4.0_attention_scale_0.9	17.24
ngram_lm_scale_2.3_attention_scale_0.01	17.38
ngram_lm_scale_2.5_attention_scale_0.1	17.4
ngram_lm_scale_5.0_attention_scale_1.3	17.45
ngram_lm_scale_2.5_attention_scale_0.08	17.47
ngram_lm_scale_3.0_attention_scale_0.3	17.53
ngram_lm_scale_2.5_attention_scale_0.05	17.58
ngram_lm_scale_5.0_attention_scale_1.2	17.63
ngram_lm_scale_2.5_attention_scale_0.01	17.7
ngram_lm_scale_4.0_attention_scale_0.7	17.7
ngram_lm_scale_5.0_attention_scale_1.1	17.8
ngram_lm_scale_4.0_attention_scale_0.6	17.89
ngram_lm_scale_5.0_attention_scale_1.0	17.94
ngram_lm_scale_3.0_attention_scale_0.1	18.09
ngram_lm_scale_4.0_attention_scale_0.5	18.09
ngram_lm_scale_5.0_attention_scale_0.9	18.09
ngram_lm_scale_3.0_attention_scale_0.08	18.14
ngram_lm_scale_3.0_attention_scale_0.05	18.21
ngram_lm_scale_3.0_attention_scale_0.01	18.31
ngram_lm_scale_5.0_attention_scale_0.7	18.41
ngram_lm_scale_4.0_attention_scale_0.3	18.49
ngram_lm_scale_5.0_attention_scale_0.6	18.57
ngram_lm_scale_5.0_attention_scale_0.5	18.71
ngram_lm_scale_4.0_attention_scale_0.1	18.85
ngram_lm_scale_4.0_attention_scale_0.08	18.88
ngram_lm_scale_4.0_attention_scale_0.05	18.95
ngram_lm_scale_5.0_attention_scale_0.3	19.01
ngram_lm_scale_4.0_attention_scale_0.01	19.02
ngram_lm_scale_5.0_attention_scale_0.1	19.3
ngram_lm_scale_5.0_attention_scale_0.08	19.32
ngram_lm_scale_5.0_attention_scale_0.05	19.37
ngram_lm_scale_5.0_attention_scale_0.01	19.43

2022-04-08 23:20:49,165 INFO [decode.py:730] Done!