metadata
base_model: cointegrated/LaBSE-en-ru
language:
- ru
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- negative_mse
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10975066
- loss:MSELoss
widget:
- source_sentence: Такие лодки строились, чтобы получить быстрый доступ к приходящим судам.
sentences:
- been nice talking to you
- >-
Нельзя ставить под сомнение притязания клиента, если не были предприняты
шаги.
- >-
Dharangaon Railway Station serves Dharangaon in Jalgaon district in the
Indian state of Maharashtra.
- source_sentence: >-
Если прилагательные смягчают этнические термины, существительные могут
сделать их жестче.
sentences:
- >-
Вслед за этим последовало секретное письмо А.Б.Чубайса об изъятии у МЦР,
переданного ему С.Н.Рерихом наследия.
- Coaches should not give young athletes a hard time.
- Эшкрофт хотел прослушивать сводки новостей снова и снова
- source_sentence: Земля была мягкой.
sentences:
- >-
По мере того, как самообладание покидало его, сердце его все больше
наполнялось тревогой.
- >-
Our borders and immigration system, including law enforcement, ought to
send a message of welcome, tolerance, and justice to members of
immigrant communities in the United States and in their countries of
origin.
- >-
Начнут действовать льготные условия аренды земель, которые предназначены
для реализации инвестиционных проектов.
- source_sentence: >-
Что же касается рава Кука: мой рав лично знал его и много раз с теплотой
рассказывал мне о нем как о великом каббалисте.
sentences:
- Вдова Эдгара Эванса, его дети и мать получили 1500 фунтов стерлингов (
- Please do not make any changes to your address.
- Мы уже закончили все запланированные дела!
- source_sentence: See Name section.
sentences:
- >-
Ms. Packard is the voice of the female blood elf in the video game World
of Warcraft.
- >-
Основным функциональным элементом, реализующим функции управления
соединением, является абонентский терминал.
- Yeah, people who might not be hungry.
model-index:
- name: SentenceTransformer based on cointegrated/LaBSE-en-ru
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.5305176535187099
name: Pearson Cosine
- type: spearman_cosine
value: 0.6347069834349862
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5553415140113596
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6389336208598283
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5499910306125031
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6347073809507647
name: Spearman Euclidean
- type: pearson_dot
value: 0.5305176585564861
name: Pearson Dot
- type: spearman_dot
value: 0.6347078463557637
name: Spearman Dot
- type: pearson_max
value: 0.5553415140113596
name: Pearson Max
- type: spearman_max
value: 0.6389336208598283
name: Spearman Max
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: Unknown
type: unknown
metrics:
- type: negative_mse
value: -0.006337030936265364
name: Negative Mse
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.5042796836494269
name: Pearson Cosine
- type: spearman_cosine
value: 0.5986471772428711
name: Spearman Cosine
- type: pearson_manhattan
value: 0.522744495080616
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.5983901280447074
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.522721961447153
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.5986471095414022
name: Spearman Euclidean
- type: pearson_dot
value: 0.504279685613151
name: Pearson Dot
- type: spearman_dot
value: 0.598648155615724
name: Spearman Dot
- type: pearson_max
value: 0.522744495080616
name: Pearson Max
- type: spearman_max
value: 0.598648155615724
name: Spearman Max
SentenceTransformer based on cointegrated/LaBSE-en-ru
This is a sentence-transformers model finetuned from cointegrated/LaBSE-en-ru. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cointegrated/LaBSE-en-ru
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("whitemouse84/LaBSE-en-ru-distilled-each-third-layer")
# Run inference
sentences = [
'See Name section.',
'Ms. Packard is the voice of the female blood elf in the video game World of Warcraft.',
'Yeah, people who might not be hungry.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.5305 |
spearman_cosine | 0.6347 |
pearson_manhattan | 0.5553 |
spearman_manhattan | 0.6389 |
pearson_euclidean | 0.55 |
spearman_euclidean | 0.6347 |
pearson_dot | 0.5305 |
spearman_dot | 0.6347 |
pearson_max | 0.5553 |
spearman_max | 0.6389 |
Knowledge Distillation
- Evaluated with
MSEEvaluator
Metric | Value |
---|---|
negative_mse | -0.0063 |
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.5043 |
spearman_cosine | 0.5986 |
pearson_manhattan | 0.5227 |
spearman_manhattan | 0.5984 |
pearson_euclidean | 0.5227 |
spearman_euclidean | 0.5986 |
pearson_dot | 0.5043 |
spearman_dot | 0.5986 |
pearson_max | 0.5227 |
spearman_max | 0.5986 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,975,066 training samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 6 tokens
- mean: 26.93 tokens
- max: 139 tokens
- size: 768 elements
- Samples:
sentence label It is based on the Java Persistence API (JPA), but it does not strictly follow the JSR 338 Specification, as it implements different design patterns and technologies.
[-0.012331949546933174, -0.04570527374744415, -0.024963658303022385, -0.03620213270187378, 0.022556383162736893, ...]
Покупаем вторичное сырье в Каунасе (Переработка вторичного сырья) - Алфенас АНД КО, ЗАО на Bizorg.
[-0.07498518377542496, -0.01913534104824066, -0.01797042042016983, 0.048263177275657654, -0.00016611881437711418, ...]
At the Equal Justice Conference ( EJC ) held in March 2001 in San Diego , LSC and the Project for the Future of Equal Justice held the second Case Management Software pre-conference .
[0.03870972990989685, -0.0638347640633583, -0.01696585863828659, -0.043612319976091385, -0.048241738229990005, ...]
- Loss:
MSELoss
Evaluation Dataset
Unnamed Dataset
- Size: 10,000 evaluation samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 5 tokens
- mean: 24.18 tokens
- max: 111 tokens
- size: 768 elements
- Samples:
sentence label The Canadian Canoe Museum is a museum dedicated to canoes located in Peterborough, Ontario, Canada.
[-0.05444105342030525, -0.03650881350040436, -0.041163671761751175, -0.010616903193295002, -0.04094529151916504, ...]
И мне нравилось, что я одновременно зарабатываю и смотрю бои».
[-0.03404555842280388, 0.028203096240758896, -0.056121889501810074, -0.0591997392475605, -0.05523117259144783, ...]
Ну, а на следующий день, разумеется, Президент Кеннеди объявил блокаду Кубы, и наши корабли остановили у кубинских берегов направлявшийся на Кубу российский корабль, и у него на борту нашли ракеты.
[-0.008193841204047203, 0.00694894278421998, -0.03027420863509178, -0.03290146216750145, 0.01425305474549532, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 0.0001num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0001weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|---|
0 | 0 | - | - | -0.2381 | 0.4206 | - |
0.0058 | 1000 | 0.0014 | - | - | - | - |
0.0117 | 2000 | 0.0009 | - | - | - | - |
0.0175 | 3000 | 0.0007 | - | - | - | - |
0.0233 | 4000 | 0.0006 | - | - | - | - |
0.0292 | 5000 | 0.0005 | 0.0004 | -0.0363 | 0.6393 | - |
0.0350 | 6000 | 0.0004 | - | - | - | - |
0.0408 | 7000 | 0.0004 | - | - | - | - |
0.0467 | 8000 | 0.0003 | - | - | - | - |
0.0525 | 9000 | 0.0003 | - | - | - | - |
0.0583 | 10000 | 0.0003 | 0.0002 | -0.0207 | 0.6350 | - |
0.0641 | 11000 | 0.0003 | - | - | - | - |
0.0700 | 12000 | 0.0003 | - | - | - | - |
0.0758 | 13000 | 0.0002 | - | - | - | - |
0.0816 | 14000 | 0.0002 | - | - | - | - |
0.0875 | 15000 | 0.0002 | 0.0002 | -0.0157 | 0.6328 | - |
0.0933 | 16000 | 0.0002 | - | - | - | - |
0.0991 | 17000 | 0.0002 | - | - | - | - |
0.1050 | 18000 | 0.0002 | - | - | - | - |
0.1108 | 19000 | 0.0002 | - | - | - | - |
0.1166 | 20000 | 0.0002 | 0.0001 | -0.0132 | 0.6317 | - |
0.1225 | 21000 | 0.0002 | - | - | - | - |
0.1283 | 22000 | 0.0002 | - | - | - | - |
0.1341 | 23000 | 0.0002 | - | - | - | - |
0.1400 | 24000 | 0.0002 | - | - | - | - |
0.1458 | 25000 | 0.0002 | 0.0001 | -0.0118 | 0.6251 | - |
0.1516 | 26000 | 0.0002 | - | - | - | - |
0.1574 | 27000 | 0.0002 | - | - | - | - |
0.1633 | 28000 | 0.0002 | - | - | - | - |
0.1691 | 29000 | 0.0002 | - | - | - | - |
0.1749 | 30000 | 0.0002 | 0.0001 | -0.0109 | 0.6304 | - |
0.1808 | 31000 | 0.0002 | - | - | - | - |
0.1866 | 32000 | 0.0002 | - | - | - | - |
0.1924 | 33000 | 0.0002 | - | - | - | - |
0.1983 | 34000 | 0.0001 | - | - | - | - |
0.2041 | 35000 | 0.0001 | 0.0001 | -0.0102 | 0.6280 | - |
0.2099 | 36000 | 0.0001 | - | - | - | - |
0.2158 | 37000 | 0.0001 | - | - | - | - |
0.2216 | 38000 | 0.0001 | - | - | - | - |
0.2274 | 39000 | 0.0001 | - | - | - | - |
0.2333 | 40000 | 0.0001 | 0.0001 | -0.0098 | 0.6272 | - |
0.2391 | 41000 | 0.0001 | - | - | - | - |
0.2449 | 42000 | 0.0001 | - | - | - | - |
0.2507 | 43000 | 0.0001 | - | - | - | - |
0.2566 | 44000 | 0.0001 | - | - | - | - |
0.2624 | 45000 | 0.0001 | 0.0001 | -0.0093 | 0.6378 | - |
0.2682 | 46000 | 0.0001 | - | - | - | - |
0.2741 | 47000 | 0.0001 | - | - | - | - |
0.2799 | 48000 | 0.0001 | - | - | - | - |
0.2857 | 49000 | 0.0001 | - | - | - | - |
0.2916 | 50000 | 0.0001 | 0.0001 | -0.0089 | 0.6325 | - |
0.2974 | 51000 | 0.0001 | - | - | - | - |
0.3032 | 52000 | 0.0001 | - | - | - | - |
0.3091 | 53000 | 0.0001 | - | - | - | - |
0.3149 | 54000 | 0.0001 | - | - | - | - |
0.3207 | 55000 | 0.0001 | 0.0001 | -0.0087 | 0.6328 | - |
0.3266 | 56000 | 0.0001 | - | - | - | - |
0.3324 | 57000 | 0.0001 | - | - | - | - |
0.3382 | 58000 | 0.0001 | - | - | - | - |
0.3441 | 59000 | 0.0001 | - | - | - | - |
0.3499 | 60000 | 0.0001 | 0.0001 | -0.0085 | 0.6357 | - |
0.3557 | 61000 | 0.0001 | - | - | - | - |
0.3615 | 62000 | 0.0001 | - | - | - | - |
0.3674 | 63000 | 0.0001 | - | - | - | - |
0.3732 | 64000 | 0.0001 | - | - | - | - |
0.3790 | 65000 | 0.0001 | 0.0001 | -0.0083 | 0.6366 | - |
0.3849 | 66000 | 0.0001 | - | - | - | - |
0.3907 | 67000 | 0.0001 | - | - | - | - |
0.3965 | 68000 | 0.0001 | - | - | - | - |
0.4024 | 69000 | 0.0001 | - | - | - | - |
0.4082 | 70000 | 0.0001 | 0.0001 | -0.0080 | 0.6325 | - |
0.4140 | 71000 | 0.0001 | - | - | - | - |
0.4199 | 72000 | 0.0001 | - | - | - | - |
0.4257 | 73000 | 0.0001 | - | - | - | - |
0.4315 | 74000 | 0.0001 | - | - | - | - |
0.4374 | 75000 | 0.0001 | 0.0001 | -0.0078 | 0.6351 | - |
0.4432 | 76000 | 0.0001 | - | - | - | - |
0.4490 | 77000 | 0.0001 | - | - | - | - |
0.4548 | 78000 | 0.0001 | - | - | - | - |
0.4607 | 79000 | 0.0001 | - | - | - | - |
0.4665 | 80000 | 0.0001 | 0.0001 | -0.0077 | 0.6323 | - |
0.4723 | 81000 | 0.0001 | - | - | - | - |
0.4782 | 82000 | 0.0001 | - | - | - | - |
0.4840 | 83000 | 0.0001 | - | - | - | - |
0.4898 | 84000 | 0.0001 | - | - | - | - |
0.4957 | 85000 | 0.0001 | 0.0001 | -0.0076 | 0.6316 | - |
0.5015 | 86000 | 0.0001 | - | - | - | - |
0.5073 | 87000 | 0.0001 | - | - | - | - |
0.5132 | 88000 | 0.0001 | - | - | - | - |
0.5190 | 89000 | 0.0001 | - | - | - | - |
0.5248 | 90000 | 0.0001 | 0.0001 | -0.0074 | 0.6306 | - |
0.5307 | 91000 | 0.0001 | - | - | - | - |
0.5365 | 92000 | 0.0001 | - | - | - | - |
0.5423 | 93000 | 0.0001 | - | - | - | - |
0.5481 | 94000 | 0.0001 | - | - | - | - |
0.5540 | 95000 | 0.0001 | 0.0001 | -0.0073 | 0.6305 | - |
0.5598 | 96000 | 0.0001 | - | - | - | - |
0.5656 | 97000 | 0.0001 | - | - | - | - |
0.5715 | 98000 | 0.0001 | - | - | - | - |
0.5773 | 99000 | 0.0001 | - | - | - | - |
0.5831 | 100000 | 0.0001 | 0.0001 | -0.0072 | 0.6333 | - |
0.5890 | 101000 | 0.0001 | - | - | - | - |
0.5948 | 102000 | 0.0001 | - | - | - | - |
0.6006 | 103000 | 0.0001 | - | - | - | - |
0.6065 | 104000 | 0.0001 | - | - | - | - |
0.6123 | 105000 | 0.0001 | 0.0001 | -0.0071 | 0.6351 | - |
0.6181 | 106000 | 0.0001 | - | - | - | - |
0.6240 | 107000 | 0.0001 | - | - | - | - |
0.6298 | 108000 | 0.0001 | - | - | - | - |
0.6356 | 109000 | 0.0001 | - | - | - | - |
0.6415 | 110000 | 0.0001 | 0.0001 | -0.0070 | 0.6330 | - |
0.6473 | 111000 | 0.0001 | - | - | - | - |
0.6531 | 112000 | 0.0001 | - | - | - | - |
0.6589 | 113000 | 0.0001 | - | - | - | - |
0.6648 | 114000 | 0.0001 | - | - | - | - |
0.6706 | 115000 | 0.0001 | 0.0001 | -0.0070 | 0.6336 | - |
0.6764 | 116000 | 0.0001 | - | - | - | - |
0.6823 | 117000 | 0.0001 | - | - | - | - |
0.6881 | 118000 | 0.0001 | - | - | - | - |
0.6939 | 119000 | 0.0001 | - | - | - | - |
0.6998 | 120000 | 0.0001 | 0.0001 | -0.0069 | 0.6305 | - |
0.7056 | 121000 | 0.0001 | - | - | - | - |
0.7114 | 122000 | 0.0001 | - | - | - | - |
0.7173 | 123000 | 0.0001 | - | - | - | - |
0.7231 | 124000 | 0.0001 | - | - | - | - |
0.7289 | 125000 | 0.0001 | 0.0001 | -0.0068 | 0.6362 | - |
0.7348 | 126000 | 0.0001 | - | - | - | - |
0.7406 | 127000 | 0.0001 | - | - | - | - |
0.7464 | 128000 | 0.0001 | - | - | - | - |
0.7522 | 129000 | 0.0001 | - | - | - | - |
0.7581 | 130000 | 0.0001 | 0.0001 | -0.0067 | 0.6340 | - |
0.7639 | 131000 | 0.0001 | - | - | - | - |
0.7697 | 132000 | 0.0001 | - | - | - | - |
0.7756 | 133000 | 0.0001 | - | - | - | - |
0.7814 | 134000 | 0.0001 | - | - | - | - |
0.7872 | 135000 | 0.0001 | 0.0001 | -0.0067 | 0.6365 | - |
0.7931 | 136000 | 0.0001 | - | - | - | - |
0.7989 | 137000 | 0.0001 | - | - | - | - |
0.8047 | 138000 | 0.0001 | - | - | - | - |
0.8106 | 139000 | 0.0001 | - | - | - | - |
0.8164 | 140000 | 0.0001 | 0.0001 | -0.0066 | 0.6339 | - |
0.8222 | 141000 | 0.0001 | - | - | - | - |
0.8281 | 142000 | 0.0001 | - | - | - | - |
0.8339 | 143000 | 0.0001 | - | - | - | - |
0.8397 | 144000 | 0.0001 | - | - | - | - |
0.8456 | 145000 | 0.0001 | 0.0001 | -0.0066 | 0.6352 | - |
0.8514 | 146000 | 0.0001 | - | - | - | - |
0.8572 | 147000 | 0.0001 | - | - | - | - |
0.8630 | 148000 | 0.0001 | - | - | - | - |
0.8689 | 149000 | 0.0001 | - | - | - | - |
0.8747 | 150000 | 0.0001 | 0.0001 | -0.0065 | 0.6357 | - |
0.8805 | 151000 | 0.0001 | - | - | - | - |
0.8864 | 152000 | 0.0001 | - | - | - | - |
0.8922 | 153000 | 0.0001 | - | - | - | - |
0.8980 | 154000 | 0.0001 | - | - | - | - |
0.9039 | 155000 | 0.0001 | 0.0001 | -0.0065 | 0.6336 | - |
0.9097 | 156000 | 0.0001 | - | - | - | - |
0.9155 | 157000 | 0.0001 | - | - | - | - |
0.9214 | 158000 | 0.0001 | - | - | - | - |
0.9272 | 159000 | 0.0001 | - | - | - | - |
0.9330 | 160000 | 0.0001 | 0.0001 | -0.0064 | 0.6334 | - |
0.9389 | 161000 | 0.0001 | - | - | - | - |
0.9447 | 162000 | 0.0001 | - | - | - | - |
0.9505 | 163000 | 0.0001 | - | - | - | - |
0.9563 | 164000 | 0.0001 | - | - | - | - |
0.9622 | 165000 | 0.0001 | 0.0001 | -0.0064 | 0.6337 | - |
0.9680 | 166000 | 0.0001 | - | - | - | - |
0.9738 | 167000 | 0.0001 | - | - | - | - |
0.9797 | 168000 | 0.0001 | - | - | - | - |
0.9855 | 169000 | 0.0001 | - | - | - | - |
0.9913 | 170000 | 0.0001 | 0.0001 | -0.0063 | 0.6347 | - |
0.9972 | 171000 | 0.0001 | - | - | - | - |
1.0 | 171486 | - | - | - | - | 0.5986 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}