wilson-wei's picture
update model card README.md
6a3aad0
|
raw
history blame
2.57 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: train
          split: train
          args: train
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.86

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.86
  • Loss: 0.7644

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Accuracy Validation Loss
2.1622 1.0 113 0.36 2.0289
1.6015 2.0 226 0.59 1.4290
1.1929 3.0 339 0.7 1.1003
0.9015 4.0 452 0.76 0.8761
0.7038 5.0 565 0.76 0.7516
0.3261 6.0 678 0.77 0.7753
0.5327 7.0 791 0.79 0.6131
0.1239 8.0 904 0.8 0.6283
0.1193 9.0 1017 0.85 0.5770
0.1405 10.0 1130 0.8 0.7979
0.0113 11.0 1243 0.81 0.7830
0.1392 12.0 1356 0.85 0.7350
0.0065 13.0 1469 0.82 0.7935
0.0049 14.0 1582 0.84 0.8323
0.0041 15.0 1695 0.86 0.7644

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1
  • Datasets 2.14.0
  • Tokenizers 0.13.3