metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- whisper-event
- generated_from_trainer
datasets:
- asierhv/composite_corpus_eu_v2.1
language:
- eu
metrics:
- wer
model-index:
- name: Whisper Small Basque
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: eu
split: test
args:
language: eu
metrics:
- name: Test WER
type: wer
value: 8.33
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: asierhv/composite_corpus_eu_v2.1
type: asierhv/composite_corpus_eu_v2.1
metrics:
- name: Wer
type: wer
value: 10.886229784051602
Whisper Small Basque
This model is a fine-tuned version of openai/whisper-small on the asierhv/composite_corpus_eu_v2.1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1836
- Wer: 10.8862
- Wer on Mozilla Common Voice,
test
split: 8.33
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.3998 | 0.125 | 1000 | 0.3651 | 21.5014 |
0.1975 | 0.25 | 2000 | 0.2918 | 15.8736 |
0.1433 | 0.375 | 3000 | 0.2721 | 13.9011 |
0.1925 | 0.5 | 4000 | 0.2565 | 12.7372 |
0.0818 | 0.625 | 5000 | 0.2563 | 11.9426 |
0.1038 | 0.75 | 6000 | 0.2390 | 11.0732 |
0.1282 | 0.875 | 7000 | 0.2344 | 11.3910 |
0.0959 | 1.0 | 8000 | 0.1836 | 10.8862 |
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.2.1.dev0
- Tokenizers 0.21.0