whisper-small-eu / README.md
xezpeleta's picture
Update README.md
70fb6a7 verified
|
raw
history blame
2.73 kB
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - asierhv/composite_corpus_eu_v2.1
language:
  - eu
metrics:
  - wer
model-index:
  - name: Whisper Small Basque
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: eu
          split: test
          args:
            language: eu
        metrics:
          - name: Test WER
            type: wer
            value: 8.33
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: asierhv/composite_corpus_eu_v2.1
          type: asierhv/composite_corpus_eu_v2.1
        metrics:
          - name: Wer
            type: wer
            value: 10.886229784051602

Whisper Small Basque

This model is a fine-tuned version of openai/whisper-small on the asierhv/composite_corpus_eu_v2.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1836
  • Wer: 10.8862
  • Wer on Mozilla Common Voice, test split: 8.33

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3998 0.125 1000 0.3651 21.5014
0.1975 0.25 2000 0.2918 15.8736
0.1433 0.375 3000 0.2721 13.9011
0.1925 0.5 4000 0.2565 12.7372
0.0818 0.625 5000 0.2563 11.9426
0.1038 0.75 6000 0.2390 11.0732
0.1282 0.875 7000 0.2344 11.3910
0.0959 1.0 8000 0.1836 10.8862

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.1.dev0
  • Tokenizers 0.21.0