hubert-base-ch-speech-emotion-recognition

This model uses [TencentGameMate/chinese-hubert-base](TencentGameMate/chinese-hubert-base Β· Hugging Face) as the pre-training model for training on the CASIA dataset.

The CASIA dataset provides 1200 samples of recordings from actor performing on 6 different emotions in Chinese(The official website provides a total of 9600 pieces of data, and the data set I used may not be complete), which are:

emotions = ['anger', 'fear', 'happy', 'neutral', 'sad', 'surprise']

Usage

import os
import random

import librosa
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoConfig, Wav2Vec2FeatureExtractor, HubertPreTrainedModel, HubertModel

model_name_or_path = "xmj2002/hubert-base-ch-speech-emotion-recognition"
duration = 6
sample_rate = 16000

config = AutoConfig.from_pretrained(
    pretrained_model_name_or_path=model_name_or_path,
)


def id2class(id):
    if id == 0:
        return "angry"
    elif id == 1:
        return "fear"
    elif id == 2:
        return "happy"
    elif id == 3:
        return "neutral"
    elif id == 4:
        return "sad"
    else:
        return "surprise"


def predict(path, processor, model):
    speech, sr = librosa.load(path=path, sr=sample_rate)
    speech = processor(speech, padding="max_length", truncation=True, max_length=duration * sr,
                       return_tensors="pt", sampling_rate=sr).input_values
    with torch.no_grad():
        logit = model(speech)
    score = F.softmax(logit, dim=1).detach().cpu().numpy()[0]
    id = torch.argmax(logit).cpu().numpy()
    print(f"file path: {path} \t predict: {id2class(id)} \t score:{score[id]} ")


class HubertClassificationHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.classifier_dropout)
        self.out_proj = nn.Linear(config.hidden_size, config.num_class)

    def forward(self, x):
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x


class HubertForSpeechClassification(HubertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.hubert = HubertModel(config)
        self.classifier = HubertClassificationHead(config)
        self.init_weights()

    def forward(self, x):
        outputs = self.hubert(x)
        hidden_states = outputs[0]
        x = torch.mean(hidden_states, dim=1)
        x = self.classifier(x)
        return x


processor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
model = HubertForSpeechClassification.from_pretrained(
    model_name_or_path,
    config=config,
)
model.eval()

file_path = [f"test_data/{path}" for path in os.listdir("test_data")]
path = random.sample(file_path, 1)[0]
predict(path, processor, model)

Training setting

  • Data set segmentation ratio: training set: verification set: test set = 0.6:0.2:0.2

  • seed: 34

  • batch_size: 36

  • lr: 2e-4

  • optimizer: AdamW(betas=(0.93,0.98), weight_decay=0.2)

  • scheduler: Step_LR(step_size=10, gamma=0.3)

  • classifier dropout: 0.1

  • optimizer parameter:

      for name, param in model.named_parameters():
          if "hubert" in name:
              parameter.append({'params': param, 'lr': 0.2 * lr})
          else:
              parameter.append({'params': param, "lr": lr})
    

Metric

Loss(test set): 0.1165

Accuracy(test set): 0.972

Accuracy curve of training set and verification set

Loss curve of training set and verification set

Downloads last month
1,104
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using xmj2002/hubert-base-ch-speech-emotion-recognition 2