xshubhamx's picture
End of training
ef29d7d verified
|
raw
history blame
6.07 kB
metadata
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: tiny-llama-lora-no-grad
    results: []

tiny-llama-lora-no-grad

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v1.0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4401
  • Accuracy: 0.8226
  • Precision: 0.8178
  • Recall: 0.8226
  • Precision Macro: 0.7396
  • Recall Macro: 0.7117
  • Macro Fpr: 0.0159
  • Weighted Fpr: 0.0152
  • Weighted Specificity: 0.9752
  • Macro Specificity: 0.9865
  • Weighted Sensitivity: 0.8226
  • Macro Sensitivity: 0.7117
  • F1 Micro: 0.8226
  • F1 Macro: 0.7177
  • F1 Weighted: 0.8190

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Precision Macro Recall Macro Macro Fpr Weighted Fpr Weighted Specificity Macro Specificity Weighted Sensitivity Macro Sensitivity F1 Micro F1 Macro F1 Weighted
1.1276 1.0 643 0.6705 0.8087 0.8055 0.8087 0.7053 0.6853 0.0172 0.0166 0.9742 0.9855 0.8087 0.6853 0.8087 0.6806 0.8034
0.503 2.0 1286 0.7206 0.8164 0.8231 0.8164 0.7746 0.7641 0.0163 0.0158 0.9773 0.9862 0.8164 0.7641 0.8164 0.7610 0.8154
0.3617 3.0 1929 0.8819 0.8164 0.8137 0.8164 0.7499 0.7170 0.0164 0.0158 0.9752 0.9861 0.8164 0.7170 0.8164 0.7242 0.8124
0.0618 4.0 2572 1.1434 0.8087 0.8107 0.8087 0.7673 0.7293 0.0173 0.0166 0.9727 0.9854 0.8087 0.7293 0.8087 0.7401 0.8074
0.0243 5.0 3215 1.2966 0.8110 0.8112 0.8110 0.7489 0.7164 0.0171 0.0164 0.9754 0.9858 0.8110 0.7164 0.8110 0.7228 0.8086
0.0121 6.0 3858 1.2965 0.8195 0.8175 0.8195 0.7312 0.7077 0.0162 0.0155 0.9752 0.9863 0.8195 0.7077 0.8195 0.7143 0.8170
0.0021 7.0 4501 1.3710 0.8187 0.8168 0.8187 0.7519 0.7112 0.0162 0.0156 0.9756 0.9863 0.8187 0.7112 0.8187 0.7165 0.8152
0.003 8.0 5144 1.3348 0.8203 0.8171 0.8203 0.7417 0.7073 0.0162 0.0154 0.9749 0.9863 0.8203 0.7073 0.8203 0.7159 0.8173
0.0023 9.0 5787 1.4038 0.8187 0.8149 0.8187 0.7548 0.7030 0.0163 0.0156 0.9742 0.9862 0.8187 0.7030 0.8187 0.7121 0.8141
0.0033 10.0 6430 1.4021 0.8203 0.8151 0.8203 0.7330 0.7110 0.0162 0.0154 0.9746 0.9863 0.8203 0.7110 0.8203 0.7152 0.8163
0.0017 11.0 7073 1.4001 0.8211 0.8178 0.8211 0.7361 0.7110 0.0160 0.0153 0.9753 0.9864 0.8211 0.7110 0.8211 0.7155 0.8179
0.0023 12.0 7716 1.4100 0.8226 0.8189 0.8226 0.7386 0.7127 0.0158 0.0152 0.9754 0.9865 0.8226 0.7127 0.8226 0.7177 0.8195
0.0034 13.0 8359 1.4273 0.8234 0.8192 0.8234 0.7385 0.7115 0.0158 0.0151 0.9757 0.9866 0.8234 0.7115 0.8234 0.7171 0.8201
0.0016 14.0 9002 1.4322 0.8226 0.8183 0.8226 0.7382 0.7111 0.0159 0.0152 0.9754 0.9865 0.8226 0.7111 0.8226 0.7168 0.8192
0.0006 15.0 9645 1.4401 0.8226 0.8178 0.8226 0.7396 0.7117 0.0159 0.0152 0.9752 0.9865 0.8226 0.7117 0.8226 0.7177 0.8190

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1