smollm_1_7B_tulu3 / README.md
yakazimir's picture
End of training
e9c97d0 verified
metadata
library_name: transformers
license: apache-2.0
base_model: HuggingFaceTB/SmolLM2-1.7B
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: HuggingFaceTB/SmolLM2-1.7B
    results: []

HuggingFaceTB/SmolLM2-1.7B

This model is a fine-tuned version of HuggingFaceTB/SmolLM2-1.7B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7823

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
1.3348 0.0551 200 1.2704
1.0411 0.1101 400 1.0435
1.0483 0.1652 600 0.9694
0.8801 0.2202 800 0.9227
0.8996 0.2753 1000 0.8888
0.8682 0.3303 1200 0.8648
0.8757 0.3854 1400 0.8468
0.8441 0.4404 1600 0.8311
0.8197 0.4955 1800 0.8206
0.7807 0.5505 2000 0.8090
0.7757 0.6056 2200 0.8015
0.7818 0.6607 2400 0.7957
0.8235 0.7157 2600 0.7915
0.7854 0.7708 2800 0.7883
0.7958 0.8258 3000 0.7863
0.8192 0.8809 3200 0.7829
0.765 0.9359 3400 0.7824
0.7939 0.9910 3600 0.7824

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.21.0