Дообучение модели через torchtune
#1
by
vorobyov01
- opened
Вот пример базового рецепта по дообучению с lora:
Скачиваем репозиторий:
mkdir torchtune
cd torchtune
tune download yandex/YandexGPT-5-Lite-8B-pretrain \
--output-dir YandexGPT-5-Lite-8B-pretrain
Смотрим список конфигов и копируем подходящий под задачу:
tune ls
tune cp llama3_1/8B_lora training_config.yaml
Изменяем конфиг – адаптируем его под нашу модель и делаем подходящим под задачу. Например, такой вариант подойдет для lora-обучения на инстракт датасете alpaca-cleaned
:
output_dir: <HOME_PATH>/torchtune/result_dir # /home/vorobyov01/torchtune/result_dir
# Tokenizer
tokenizer:
_component_: torchtune.models.llama2.llama2_tokenizer
path: <HOME_PATH>/torchtune/YandexGPT-5-Lite-8B-pretrain/tokenizer.model
max_seq_len: null
# Model Arguments
model:
_component_: torchtune.models.llama3.lora_llama3
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
apply_lora_to_output: False
lora_rank: 8
lora_alpha: 16
lora_dropout: 0.0
vocab_size: 129024
num_layers: 32
num_heads: 32
num_kv_heads: 8
embed_dim: 4096
max_seq_len: 32768
intermediate_dim: 14336
attn_dropout: 0.0
norm_eps: 0.000001
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: <HOME_PATH>/torchtune/YandexGPT-5-Lite-8B-pretrain
checkpoint_files: [
model-00001-of-00004.safetensors,
model-00002-of-00004.safetensors,
model-00003-of-00004.safetensors,
model-00004-of-00004.safetensors
]
recipe_checkpoint: null
output_dir: ${output_dir}
model_type: LLAMA3
resume_from_checkpoint: False
save_adapter_weights_only: False
# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False # True increases speed
seed: null
shuffle: True
batch_size: 2
# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 8 # Use to increase effective batch size
compile: False # torch.compile the model + loss, True increases speed + decreases memory
# Logging
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}/logs
log_every_n_steps: 1
log_peak_memory_stats: True
# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: False # True reduces memory
enable_activation_offloading: False # True reduces memory
# Profiler (disabled)
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False
12
#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs
#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True
#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False
# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 3
active_steps: 2
num_cycles: 1
Запускаем обучение:
tune run lora_finetune_single_device --config training_config.yaml
Можно на нескольких GPU:
CUDA_VISIBLE_DEVICES="0,1,2,3" tune run --nproc-per-node 4 lora_finetune_distributed --config training_config.yaml
Аналогично можно и через https://github.com/EvilFreelancer/impruver реализовать тюн, правда конфиг надо будет чуть подправить, займусь этим сегодня