|
--- |
|
base_model: MiMe-MeMo/MeMo-BERT-02 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: MeMo_BERT-SA_2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MeMo_BERT-SA_2 |
|
|
|
This model is a fine-tuned version of [MiMe-MeMo/MeMo-BERT-02](https://huggingface.co/MiMe-MeMo/MeMo-BERT-02) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4358 |
|
- F1-score: 0.5924 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1-score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 265 | 1.0171 | 0.5029 | |
|
| 0.9806 | 2.0 | 530 | 0.9884 | 0.5416 | |
|
| 0.9806 | 3.0 | 795 | 1.1255 | 0.5477 | |
|
| 0.6405 | 4.0 | 1060 | 1.0771 | 0.5716 | |
|
| 0.6405 | 5.0 | 1325 | 1.4358 | 0.5924 | |
|
| 0.3872 | 6.0 | 1590 | 2.0203 | 0.5780 | |
|
| 0.3872 | 7.0 | 1855 | 2.4784 | 0.5730 | |
|
| 0.2014 | 8.0 | 2120 | 2.7627 | 0.5735 | |
|
| 0.2014 | 9.0 | 2385 | 3.1488 | 0.5733 | |
|
| 0.0888 | 10.0 | 2650 | 3.2253 | 0.5636 | |
|
| 0.0888 | 11.0 | 2915 | 3.4722 | 0.5488 | |
|
| 0.0563 | 12.0 | 3180 | 3.6568 | 0.5718 | |
|
| 0.0563 | 13.0 | 3445 | 3.8553 | 0.5676 | |
|
| 0.0188 | 14.0 | 3710 | 3.8721 | 0.5572 | |
|
| 0.0188 | 15.0 | 3975 | 3.9256 | 0.5782 | |
|
| 0.0021 | 16.0 | 4240 | 3.9991 | 0.5802 | |
|
| 0.0032 | 17.0 | 4505 | 4.0370 | 0.5798 | |
|
| 0.0032 | 18.0 | 4770 | 4.1400 | 0.5746 | |
|
| 0.0012 | 19.0 | 5035 | 4.1422 | 0.5740 | |
|
| 0.0012 | 20.0 | 5300 | 4.1453 | 0.5742 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|