MeMo_BERT-SA_ScandiBERT

This model is a fine-tuned version of vesteinn/ScandiBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1392
  • F1-score: 0.7266

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 297 0.8686 0.6373
0.8175 2.0 594 0.8961 0.7140
0.8175 3.0 891 0.8175 0.7237
0.5748 4.0 1188 1.2192 0.7226
0.5748 5.0 1485 1.1315 0.7003
0.3963 6.0 1782 1.3036 0.6791
0.2579 7.0 2079 1.2430 0.7100
0.2579 8.0 2376 1.7559 0.7143
0.1768 9.0 2673 1.8862 0.7070
0.1768 10.0 2970 1.9733 0.7137
0.1065 11.0 3267 2.2073 0.7071
0.0559 12.0 3564 2.1912 0.7184
0.0559 13.0 3861 2.1392 0.7266
0.0367 14.0 4158 2.3618 0.6950
0.0367 15.0 4455 2.3324 0.7223
0.026 16.0 4752 2.4711 0.7108
0.0041 17.0 5049 2.5320 0.7108
0.0041 18.0 5346 2.6578 0.6948
0.0059 19.0 5643 2.6631 0.6991
0.0059 20.0 5940 2.6313 0.7067

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
2
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/MeMo_BERT-SA_ScandiBERT

Finetuned
(2)
this model