Edit model card

Noise_MeMo_BERT-3_02

This model is a fine-tuned version of MiMe-MeMo/MeMo-BERT-03 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0729
  • F1-score: 0.6452

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
0.095 1.0 915 0.0707 0.5373
0.0532 2.0 1830 0.0877 0.4286
0.0317 3.0 2745 0.0951 0.4889
0.0196 4.0 3660 0.1114 0.3590
0.0265 5.0 4575 0.0810 0.6333
0.0118 6.0 5490 0.1097 0.4783
0.0247 7.0 6405 0.1153 0.4583
0.0255 8.0 7320 0.0781 0.5634
0.0242 9.0 8235 0.1156 0.5455
0.0423 10.0 9150 0.1186 0.4
0.0246 11.0 10065 0.1057 0.5000
0.0224 12.0 10980 0.0998 0.56
0.0168 13.0 11895 0.0729 0.6452
0.0106 14.0 12810 0.1171 0.4444
0.0097 15.0 13725 0.0735 0.5818
0.0187 16.0 14640 0.0943 0.5417
0.0128 17.0 15555 0.1011 0.5417
0.0098 18.0 16470 0.1029 0.5714
0.0116 19.0 17385 0.0949 0.6182
0.0084 20.0 18300 0.0956 0.6154

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
7
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/Noise_MeMo_BERT-3_02

Finetuned
(16)
this model