Edit model card

memo3_FGN

This model is a fine-tuned version of MiMe-MeMo/MeMo-BERT-03 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3348
  • F1-score: 0.8316

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 120 0.4934 0.8027
No log 2.0 240 0.5542 0.8121
No log 3.0 360 0.8229 0.8168
No log 4.0 480 0.9300 0.8123
0.4028 5.0 600 1.1413 0.8057
0.4028 6.0 720 1.3327 0.7989
0.4028 7.0 840 1.5178 0.7851
0.4028 8.0 960 1.1979 0.8299
0.0435 9.0 1080 1.2149 0.8307
0.0435 10.0 1200 1.2327 0.8302
0.0435 11.0 1320 1.2521 0.8312
0.0435 12.0 1440 1.2734 0.8304
0.0238 13.0 1560 1.3348 0.8316
0.0238 14.0 1680 1.3715 0.8181
0.0238 15.0 1800 1.4095 0.8064
0.0238 16.0 1920 1.4157 0.8179
0.0099 17.0 2040 1.4234 0.8179
0.0099 18.0 2160 1.4038 0.8127
0.0099 19.0 2280 1.4404 0.8117
0.0099 20.0 2400 1.4436 0.8117

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/memo3_FGN

Finetuned
(16)
this model