Edit model card

memobert3_ED

This model is a fine-tuned version of MiMe-MeMo/MeMo-BERT-03 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7895
  • F1-score: 0.9012

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 69 0.4129 0.8180
No log 2.0 138 0.5440 0.8511
No log 3.0 207 0.6458 0.8767
No log 4.0 276 0.6689 0.8683
No log 5.0 345 0.7171 0.8848
No log 6.0 414 1.0837 0.8585
No log 7.0 483 0.7652 0.8848
0.1451 8.0 552 0.7895 0.9012
0.1451 9.0 621 0.8248 0.8929
0.1451 10.0 690 0.8456 0.8929
0.1451 11.0 759 0.8626 0.8929
0.1451 12.0 828 0.8791 0.8929
0.1451 13.0 897 0.8929 0.8845
0.1451 14.0 966 0.9028 0.8845
0.0001 15.0 1035 0.9134 0.8845
0.0001 16.0 1104 0.9205 0.8845
0.0001 17.0 1173 0.9262 0.8845
0.0001 18.0 1242 0.9309 0.8845
0.0001 19.0 1311 0.9331 0.8845
0.0001 20.0 1380 0.9337 0.8845

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/memobert3_ED

Finetuned
(16)
this model