|
--- |
|
language: |
|
- nl |
|
datasets: |
|
- yhavinga/mc4_nl_cleaned |
|
tags: |
|
- seq2seq |
|
- lm-head |
|
license: apache-2.0 |
|
inference: false |
|
--- |
|
|
|
# Work in progress. Dec 2021. |
|
|
|
# A collection of Dutch T5 models |
|
|
|
* Many thanks to the [Google TPU Research Cloud](https://sites.research.google/trc/about/) for providing access to a TPU cluster! |
|
* Continuation of work started during the [Hugging Face community week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by [HuggingFace](https://huggingface.co/) and TPU usage sponsored by Google, for the project [Pre-train T5 from scratch in Dutch](https://discuss.huggingface.co/t/pretrain-t5-from-scratch-in-dutch/8109). |
|
* Using improved training script - no more exceptions during training, so no restarting required. |
|
* All models trained with tensorflow metrics. |
|
* Thanks to @gsarti for creating the [t5-flax-gcp repository](https://github.com/gsarti/t5-flax-gcp)! |
|
|
|
|
|
| |`t5-base-dutch` |`t5-v1.1-base-dutch` |`t5-v1.1-large-dutch-cased`| `t5-v1.1-base-dutch-uncased`| |
|
|-----------------------|-------------------------|-------------------------|---------------------------|-----------------------------| |
|
|`tokenizer` |`cased` |`uncased` |`cased` |`uncased` | |
|
|`source model config` |`google/t5-base` |`google/t5-v1_1-base` |`google/t5-v1_1-large` |`google/t5-v1_1_base` | |
|
|`dataset` |`yhavinga/mc4_nl_cleaned`|`yhavinga/mc4_nl_cleaned`|`yhavinga/mc4_nl_cleaned` |`yhavinga/mc4_nl_cleaned` | |
|
|`tpu vm` | two | one | three | one | |
|
|`finished` | | YES | | | |
|
|*Hyperparameters* | | | | | |
|
|`epochs` | 1 | 1 | 4 | 2 | |
|
|`per-device batch size`| 16 | 16 | 2 | 8 | |
|
|`tot. batch size` | 128 | 128 | 16 | ? | |
|
|`steps` | 508 976 | 508 976 | 8 428 012 | ? | |
|
|`max seq. length` | 512 | 512 | 1024 | 1024 | |
|
|`tot. tok. trained on` | 33B | 33B | 138B | ? | |
|
|`optimizer` | adafactor | adafactor | adafactor | adafactor | |
|
|`warmup steps` | 10000 | 10000 | 10000 | 10000 | |
|
|`learning rate` | 0.005 | 0.005 | 0.005 | 0.005 | |
|
|`weigth decay` | 0.01 | 0.01 | 0.01 | 0.001 | |
|
|`tie embeds` |`false` |`false` |`false` |`false` | |
|
|`validation split size`| 15K examples | 15K examples | 15K examples | 15K examples | |
|
|*Model config* | | | | | |
|
|`d_ff` | 3072 | 2048 | 2816 | 2048 | |
|
|`d_kv` | 64 | 64 | 64 | 64 | |
|
|`d_model` | 768 | 768 | 1024 | 768 | |
|
|`dropout rate` | 0.1 | 0.1 | 0.1 (0.0 wh. pre-train.) | 0.1 (0.0 wh. pre-train.) | |
|
|`ff projection` |`relu` |`gated-gelu` |`gated-gelu` |`gated-relu` | |
|
|`num decoder layers` | 12 | 12 | 24 | 12 | |
|
|`num heads` | 12 | 12 | 16 | 12 | |
|
|`num layers` | 12 | 12 | 24 | 12 | |
|
|`rel. attn. buckets` | 32 | 32 | 32 | 32 | |
|
|`vocab size` | 32103 | 32103 | 32103 | 32103 | |
|
|*Training time* | ~ 100 hours | 101 hours | ~ 370 hours | ? | |
|
|*Evaluation* | | | | | |
|
|`accuracy` | | 0.6976 | | | |
|
|`loss` | | 1.379 | | | |
|
|