Mistral-7B-Instruct-v0.1-dpo-full-1-epoch-hydrox-safe

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0040
  • Rewards/chosen: 0.1378
  • Rewards/rejected: -29.0317
  • Rewards/accuracies: 0.9983
  • Rewards/margins: 29.1695
  • Logps/rejected: -714.5497
  • Logps/chosen: -254.4278
  • Logits/rejected: -3.3257
  • Logits/chosen: -3.4722

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.1608 0.03 100 0.1654 1.2374 -2.6089 0.9571 3.8463 -450.3222 -243.4314 -3.2204 -3.2045
0.1349 0.07 200 0.0961 0.9406 -6.3451 0.9756 7.2857 -487.6837 -246.3994 -3.1898 -3.2216
0.1065 0.1 300 0.1015 -0.2203 -9.2710 0.9840 9.0507 -516.9434 -258.0089 -3.1999 -3.2283
0.0876 0.14 400 0.0597 -1.4412 -13.6992 0.9865 12.2580 -561.2250 -270.2174 -3.2066 -3.2753
0.304 0.17 500 0.0874 -0.2677 -17.2497 0.9891 16.9821 -596.7302 -258.4822 -3.2093 -3.2601
0.1206 0.2 600 0.0686 -0.4252 -15.6514 0.9891 15.2262 -580.7473 -260.0578 -3.1689 -3.2024
0.0176 0.24 700 0.0630 -0.7082 -17.5291 0.9933 16.8209 -599.5242 -262.8876 -3.2305 -3.2958
0.0461 0.27 800 0.0341 -1.2542 -21.2558 0.9933 20.0016 -636.7914 -268.3477 -3.3936 -3.5158
0.0185 0.31 900 0.0291 0.3781 -17.2475 0.9966 17.6256 -596.7079 -252.0242 -3.3745 -3.4941
0.0219 0.34 1000 0.0248 -0.1014 -19.6177 0.9958 19.5163 -620.4097 -256.8191 -3.3236 -3.4703
0.0193 0.37 1100 0.0476 0.2441 -22.8685 0.9949 23.1126 -652.9178 -253.3648 -3.3700 -3.5127
0.0153 0.41 1200 0.0344 0.2337 -21.0722 0.9958 21.3059 -634.9553 -253.4690 -3.3281 -3.4433
0.1011 0.44 1300 0.0320 0.3865 -19.5099 0.9941 19.8964 -619.3322 -251.9406 -3.2086 -3.2943
0.0085 0.48 1400 0.0164 -0.3604 -24.6053 0.9958 24.2449 -670.2856 -259.4097 -3.3688 -3.5055
0.0057 0.51 1500 0.0115 -0.8584 -33.7853 0.9966 32.9269 -762.0861 -264.3898 -3.2986 -3.4455
0.0082 0.54 1600 0.0525 -0.3661 -22.4426 0.9975 22.0765 -648.6592 -259.4668 -3.3372 -3.4816
0.0128 0.58 1700 0.0514 -0.4253 -24.3063 0.9958 23.8810 -667.2958 -260.0584 -3.3102 -3.4488
0.0018 0.61 1800 0.0356 -0.3563 -24.1492 0.9966 23.7929 -665.7247 -259.3687 -3.2894 -3.4159
0.0105 0.65 1900 0.0381 -0.9566 -33.8957 0.9958 32.9391 -763.1902 -265.3718 -3.3840 -3.5348
0.006 0.68 2000 0.0072 -0.1403 -26.2483 0.9975 26.1080 -686.7160 -257.2083 -3.3371 -3.4805
0.0026 0.71 2100 0.0102 -0.1870 -29.0470 0.9966 28.8600 -714.7033 -257.6760 -3.3557 -3.4974
0.0038 0.75 2200 0.0078 -0.4803 -29.8773 0.9966 29.3970 -723.0064 -260.6087 -3.3551 -3.5046
0.0011 0.78 2300 0.0075 -0.4771 -28.4348 0.9966 27.9577 -708.5814 -260.5770 -3.3459 -3.4948
0.0033 0.82 2400 0.0047 -0.1998 -28.0030 0.9983 27.8032 -704.2631 -257.8039 -3.3489 -3.4950
0.0051 0.85 2500 0.0048 -0.2771 -29.2358 0.9992 28.9587 -716.5906 -258.5765 -3.3025 -3.4428
0.0074 0.88 2600 0.0044 -0.2089 -29.6486 0.9975 29.4396 -720.7189 -257.8950 -3.3320 -3.4805
0.0032 0.92 2700 0.0041 -0.1675 -30.1791 0.9975 30.0116 -726.0242 -257.4810 -3.3308 -3.4822
0.0023 0.95 2800 0.0038 0.0604 -29.3907 0.9983 29.4511 -718.1400 -255.2013 -3.3267 -3.4751
0.003 0.99 2900 0.0040 0.1446 -28.9793 0.9983 29.1239 -714.0264 -254.3596 -3.3257 -3.4723

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
11
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yihang7/Mistral-7B-Instruct-v0.1-dpo-full-1-epoch-hydrox-safe

Finetuned
(242)
this model