segformer-b5-miic-tl
This model is a fine-tuned version of nvidia/mit-b5 on the yijisuk/ic-chip-sample dataset. It achieves the following results on the evaluation set:
- Loss: 0.2247
- Mean Iou: 0.4565
- Mean Accuracy: 0.9129
- Overall Accuracy: 0.9129
- Accuracy Unlabeled: nan
- Accuracy Circuit: 0.9129
- Iou Unlabeled: 0.0
- Iou Circuit: 0.9129
- Dice Coefficient: 0.8406
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Circuit | Iou Unlabeled | Iou Circuit | Dice Coefficient |
---|---|---|---|---|---|---|---|---|---|---|---|
0.2801 | 3.12 | 250 | 0.2305 | 0.4832 | 0.9663 | 0.9663 | nan | 0.9663 | 0.0 | 0.9663 | 0.8527 |
0.2785 | 6.25 | 500 | 0.2715 | 0.4800 | 0.9601 | 0.9601 | nan | 0.9601 | 0.0 | 0.9601 | 0.8511 |
0.208 | 9.38 | 750 | 0.2681 | 0.4811 | 0.9622 | 0.9622 | nan | 0.9622 | 0.0 | 0.9622 | 0.8538 |
0.2042 | 12.5 | 1000 | 0.2959 | 0.4650 | 0.9299 | 0.9299 | nan | 0.9299 | 0.0 | 0.9299 | 0.7879 |
0.1649 | 15.62 | 1250 | 0.2407 | 0.4340 | 0.8679 | 0.8679 | nan | 0.8679 | 0.0 | 0.8679 | 0.8150 |
0.1353 | 18.75 | 1500 | 0.2530 | 0.4543 | 0.9085 | 0.9085 | nan | 0.9085 | 0.0 | 0.9085 | 0.8336 |
0.126 | 21.88 | 1750 | 0.4934 | 0.4559 | 0.9119 | 0.9119 | nan | 0.9119 | 0.0 | 0.9119 | 0.7678 |
0.1196 | 25.0 | 2000 | 0.2896 | 0.4604 | 0.9209 | 0.9209 | nan | 0.9209 | 0.0 | 0.9209 | 0.7807 |
0.1149 | 28.12 | 2250 | 0.2210 | 0.4634 | 0.9268 | 0.9268 | nan | 0.9268 | 0.0 | 0.9268 | 0.8470 |
0.1095 | 31.25 | 2500 | 0.2215 | 0.4534 | 0.9067 | 0.9067 | nan | 0.9067 | 0.0 | 0.9067 | 0.8380 |
0.109 | 34.38 | 2750 | 0.2256 | 0.4243 | 0.8487 | 0.8487 | nan | 0.8487 | 0.0 | 0.8487 | 0.8077 |
0.1062 | 37.5 | 3000 | 0.2172 | 0.4497 | 0.8994 | 0.8994 | nan | 0.8994 | 0.0 | 0.8994 | 0.8363 |
0.1046 | 40.62 | 3250 | 0.2401 | 0.4551 | 0.9102 | 0.9102 | nan | 0.9102 | 0.0 | 0.9102 | 0.8387 |
0.1096 | 43.75 | 3500 | 0.2157 | 0.4582 | 0.9164 | 0.9164 | nan | 0.9164 | 0.0 | 0.9164 | 0.8425 |
0.1014 | 46.88 | 3750 | 0.2344 | 0.4573 | 0.9146 | 0.9146 | nan | 0.9146 | 0.0 | 0.9146 | 0.8411 |
0.1036 | 50.0 | 4000 | 0.2247 | 0.4565 | 0.9129 | 0.9129 | nan | 0.9129 | 0.0 | 0.9129 | 0.8406 |
Framework versions
- Transformers 4.36.2
- Pytorch 1.11.0+cu115
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for yijisuk/segformer-b5-miic-tl
Base model
nvidia/mit-b5