yoeven's picture
Upload README.md with huggingface_hub
09092e4 verified
---
tags:
- mteb
- sentence-transformers
- transformers
- llama-cpp
- gguf-my-repo
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: mit
base_model: intfloat/multilingual-e5-large-instruct
model-index:
- name: multilingual-e5-large-instruct
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 76.23880597014924
- type: ap
value: 39.07351965022687
- type: f1
value: 70.04836733862683
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (de)
type: mteb/amazon_counterfactual
config: de
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 66.71306209850107
- type: ap
value: 79.01499914759529
- type: f1
value: 64.81951817560703
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en-ext)
type: mteb/amazon_counterfactual
config: en-ext
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 73.85307346326837
- type: ap
value: 22.447519885878737
- type: f1
value: 61.0162730745633
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (ja)
type: mteb/amazon_counterfactual
config: ja
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 76.04925053533191
- type: ap
value: 23.44983217128922
- type: f1
value: 62.5723230907759
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 96.28742500000001
- type: ap
value: 94.8449918887462
- type: f1
value: 96.28680923610432
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 56.716
- type: f1
value: 55.76510398266401
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (de)
type: mteb/amazon_reviews_multi
config: de
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 52.99999999999999
- type: f1
value: 52.00829994765178
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (es)
type: mteb/amazon_reviews_multi
config: es
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 48.806000000000004
- type: f1
value: 48.082345914983634
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (fr)
type: mteb/amazon_reviews_multi
config: fr
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 48.507999999999996
- type: f1
value: 47.68752844642045
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (ja)
type: mteb/amazon_reviews_multi
config: ja
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 47.709999999999994
- type: f1
value: 47.05870376637181
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (zh)
type: mteb/amazon_reviews_multi
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 44.662000000000006
- type: f1
value: 43.42371965372771
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: arguana
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 31.721
- type: map_at_10
value: 49.221
- type: map_at_100
value: 49.884
- type: map_at_1000
value: 49.888
- type: map_at_3
value: 44.31
- type: map_at_5
value: 47.276
- type: mrr_at_1
value: 32.432
- type: mrr_at_10
value: 49.5
- type: mrr_at_100
value: 50.163000000000004
- type: mrr_at_1000
value: 50.166
- type: mrr_at_3
value: 44.618
- type: mrr_at_5
value: 47.541
- type: ndcg_at_1
value: 31.721
- type: ndcg_at_10
value: 58.384
- type: ndcg_at_100
value: 61.111000000000004
- type: ndcg_at_1000
value: 61.187999999999995
- type: ndcg_at_3
value: 48.386
- type: ndcg_at_5
value: 53.708999999999996
- type: precision_at_1
value: 31.721
- type: precision_at_10
value: 8.741
- type: precision_at_100
value: 0.991
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 20.057
- type: precision_at_5
value: 14.609
- type: recall_at_1
value: 31.721
- type: recall_at_10
value: 87.411
- type: recall_at_100
value: 99.075
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 60.171
- type: recall_at_5
value: 73.044
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 46.40419580759799
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 40.48593255007969
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 63.889179122289995
- type: mrr
value: 77.61146286769556
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 88.15075203727929
- type: cos_sim_spearman
value: 86.9622224570873
- type: euclidean_pearson
value: 86.70473853624121
- type: euclidean_spearman
value: 86.9622224570873
- type: manhattan_pearson
value: 86.21089380980065
- type: manhattan_spearman
value: 86.75318154937008
- task:
type: BitextMining
dataset:
name: MTEB BUCC (de-en)
type: mteb/bucc-bitext-mining
config: de-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 99.65553235908142
- type: f1
value: 99.60681976339595
- type: precision
value: 99.58246346555325
- type: recall
value: 99.65553235908142
- task:
type: BitextMining
dataset:
name: MTEB BUCC (fr-en)
type: mteb/bucc-bitext-mining
config: fr-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 99.26260180497468
- type: f1
value: 99.14520507740848
- type: precision
value: 99.08650671362535
- type: recall
value: 99.26260180497468
- task:
type: BitextMining
dataset:
name: MTEB BUCC (ru-en)
type: mteb/bucc-bitext-mining
config: ru-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 98.07412538967787
- type: f1
value: 97.86629719431936
- type: precision
value: 97.76238309664012
- type: recall
value: 98.07412538967787
- task:
type: BitextMining
dataset:
name: MTEB BUCC (zh-en)
type: mteb/bucc-bitext-mining
config: zh-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 99.42074776197998
- type: f1
value: 99.38564156573635
- type: precision
value: 99.36808846761454
- type: recall
value: 99.42074776197998
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 85.73376623376623
- type: f1
value: 85.68480707214599
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 40.935218072113855
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 36.276389017675264
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.764166666666668
- type: map_at_10
value: 37.298166666666674
- type: map_at_100
value: 38.530166666666666
- type: map_at_1000
value: 38.64416666666667
- type: map_at_3
value: 34.484833333333334
- type: map_at_5
value: 36.0385
- type: mrr_at_1
value: 32.93558333333333
- type: mrr_at_10
value: 41.589749999999995
- type: mrr_at_100
value: 42.425333333333334
- type: mrr_at_1000
value: 42.476333333333336
- type: mrr_at_3
value: 39.26825
- type: mrr_at_5
value: 40.567083333333336
- type: ndcg_at_1
value: 32.93558333333333
- type: ndcg_at_10
value: 42.706583333333334
- type: ndcg_at_100
value: 47.82483333333333
- type: ndcg_at_1000
value: 49.95733333333334
- type: ndcg_at_3
value: 38.064750000000004
- type: ndcg_at_5
value: 40.18158333333333
- type: precision_at_1
value: 32.93558333333333
- type: precision_at_10
value: 7.459833333333334
- type: precision_at_100
value: 1.1830833333333335
- type: precision_at_1000
value: 0.15608333333333332
- type: precision_at_3
value: 17.5235
- type: precision_at_5
value: 12.349833333333333
- type: recall_at_1
value: 27.764166666666668
- type: recall_at_10
value: 54.31775
- type: recall_at_100
value: 76.74350000000001
- type: recall_at_1000
value: 91.45208333333332
- type: recall_at_3
value: 41.23425
- type: recall_at_5
value: 46.73983333333334
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: climate-fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 12.969
- type: map_at_10
value: 21.584999999999997
- type: map_at_100
value: 23.3
- type: map_at_1000
value: 23.5
- type: map_at_3
value: 18.218999999999998
- type: map_at_5
value: 19.983
- type: mrr_at_1
value: 29.316
- type: mrr_at_10
value: 40.033
- type: mrr_at_100
value: 40.96
- type: mrr_at_1000
value: 41.001
- type: mrr_at_3
value: 37.123
- type: mrr_at_5
value: 38.757999999999996
- type: ndcg_at_1
value: 29.316
- type: ndcg_at_10
value: 29.858
- type: ndcg_at_100
value: 36.756
- type: ndcg_at_1000
value: 40.245999999999995
- type: ndcg_at_3
value: 24.822
- type: ndcg_at_5
value: 26.565
- type: precision_at_1
value: 29.316
- type: precision_at_10
value: 9.186
- type: precision_at_100
value: 1.6549999999999998
- type: precision_at_1000
value: 0.22999999999999998
- type: precision_at_3
value: 18.436
- type: precision_at_5
value: 13.876
- type: recall_at_1
value: 12.969
- type: recall_at_10
value: 35.142
- type: recall_at_100
value: 59.143
- type: recall_at_1000
value: 78.594
- type: recall_at_3
value: 22.604
- type: recall_at_5
value: 27.883000000000003
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: dbpedia-entity
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.527999999999999
- type: map_at_10
value: 17.974999999999998
- type: map_at_100
value: 25.665
- type: map_at_1000
value: 27.406000000000002
- type: map_at_3
value: 13.017999999999999
- type: map_at_5
value: 15.137
- type: mrr_at_1
value: 62.5
- type: mrr_at_10
value: 71.891
- type: mrr_at_100
value: 72.294
- type: mrr_at_1000
value: 72.296
- type: mrr_at_3
value: 69.958
- type: mrr_at_5
value: 71.121
- type: ndcg_at_1
value: 50.875
- type: ndcg_at_10
value: 38.36
- type: ndcg_at_100
value: 44.235
- type: ndcg_at_1000
value: 52.154
- type: ndcg_at_3
value: 43.008
- type: ndcg_at_5
value: 40.083999999999996
- type: precision_at_1
value: 62.5
- type: precision_at_10
value: 30.0
- type: precision_at_100
value: 10.038
- type: precision_at_1000
value: 2.0869999999999997
- type: precision_at_3
value: 46.833000000000006
- type: precision_at_5
value: 38.800000000000004
- type: recall_at_1
value: 8.527999999999999
- type: recall_at_10
value: 23.828
- type: recall_at_100
value: 52.322
- type: recall_at_1000
value: 77.143
- type: recall_at_3
value: 14.136000000000001
- type: recall_at_5
value: 17.761
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 51.51
- type: f1
value: 47.632159862049896
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 60.734
- type: map_at_10
value: 72.442
- type: map_at_100
value: 72.735
- type: map_at_1000
value: 72.75
- type: map_at_3
value: 70.41199999999999
- type: map_at_5
value: 71.80499999999999
- type: mrr_at_1
value: 65.212
- type: mrr_at_10
value: 76.613
- type: mrr_at_100
value: 76.79899999999999
- type: mrr_at_1000
value: 76.801
- type: mrr_at_3
value: 74.8
- type: mrr_at_5
value: 76.12400000000001
- type: ndcg_at_1
value: 65.212
- type: ndcg_at_10
value: 77.988
- type: ndcg_at_100
value: 79.167
- type: ndcg_at_1000
value: 79.452
- type: ndcg_at_3
value: 74.362
- type: ndcg_at_5
value: 76.666
- type: precision_at_1
value: 65.212
- type: precision_at_10
value: 10.003
- type: precision_at_100
value: 1.077
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 29.518
- type: precision_at_5
value: 19.016
- type: recall_at_1
value: 60.734
- type: recall_at_10
value: 90.824
- type: recall_at_100
value: 95.71600000000001
- type: recall_at_1000
value: 97.577
- type: recall_at_3
value: 81.243
- type: recall_at_5
value: 86.90299999999999
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: fiqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.845
- type: map_at_10
value: 39.281
- type: map_at_100
value: 41.422
- type: map_at_1000
value: 41.593
- type: map_at_3
value: 34.467
- type: map_at_5
value: 37.017
- type: mrr_at_1
value: 47.531
- type: mrr_at_10
value: 56.204
- type: mrr_at_100
value: 56.928999999999995
- type: mrr_at_1000
value: 56.962999999999994
- type: mrr_at_3
value: 54.115
- type: mrr_at_5
value: 55.373000000000005
- type: ndcg_at_1
value: 47.531
- type: ndcg_at_10
value: 47.711999999999996
- type: ndcg_at_100
value: 54.510999999999996
- type: ndcg_at_1000
value: 57.103
- type: ndcg_at_3
value: 44.145
- type: ndcg_at_5
value: 45.032
- type: precision_at_1
value: 47.531
- type: precision_at_10
value: 13.194
- type: precision_at_100
value: 2.045
- type: precision_at_1000
value: 0.249
- type: precision_at_3
value: 29.424
- type: precision_at_5
value: 21.451
- type: recall_at_1
value: 23.845
- type: recall_at_10
value: 54.967
- type: recall_at_100
value: 79.11399999999999
- type: recall_at_1000
value: 94.56700000000001
- type: recall_at_3
value: 40.256
- type: recall_at_5
value: 46.215
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: hotpotqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 37.819
- type: map_at_10
value: 60.889
- type: map_at_100
value: 61.717999999999996
- type: map_at_1000
value: 61.778
- type: map_at_3
value: 57.254000000000005
- type: map_at_5
value: 59.541
- type: mrr_at_1
value: 75.638
- type: mrr_at_10
value: 82.173
- type: mrr_at_100
value: 82.362
- type: mrr_at_1000
value: 82.37
- type: mrr_at_3
value: 81.089
- type: mrr_at_5
value: 81.827
- type: ndcg_at_1
value: 75.638
- type: ndcg_at_10
value: 69.317
- type: ndcg_at_100
value: 72.221
- type: ndcg_at_1000
value: 73.382
- type: ndcg_at_3
value: 64.14
- type: ndcg_at_5
value: 67.07600000000001
- type: precision_at_1
value: 75.638
- type: precision_at_10
value: 14.704999999999998
- type: precision_at_100
value: 1.698
- type: precision_at_1000
value: 0.185
- type: precision_at_3
value: 41.394999999999996
- type: precision_at_5
value: 27.162999999999997
- type: recall_at_1
value: 37.819
- type: recall_at_10
value: 73.52499999999999
- type: recall_at_100
value: 84.875
- type: recall_at_1000
value: 92.559
- type: recall_at_3
value: 62.092999999999996
- type: recall_at_5
value: 67.907
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 94.60079999999999
- type: ap
value: 92.67396345347356
- type: f1
value: 94.5988098167121
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: msmarco
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 21.285
- type: map_at_10
value: 33.436
- type: map_at_100
value: 34.63
- type: map_at_1000
value: 34.681
- type: map_at_3
value: 29.412
- type: map_at_5
value: 31.715
- type: mrr_at_1
value: 21.848
- type: mrr_at_10
value: 33.979
- type: mrr_at_100
value: 35.118
- type: mrr_at_1000
value: 35.162
- type: mrr_at_3
value: 30.036
- type: mrr_at_5
value: 32.298
- type: ndcg_at_1
value: 21.862000000000002
- type: ndcg_at_10
value: 40.43
- type: ndcg_at_100
value: 46.17
- type: ndcg_at_1000
value: 47.412
- type: ndcg_at_3
value: 32.221
- type: ndcg_at_5
value: 36.332
- type: precision_at_1
value: 21.862000000000002
- type: precision_at_10
value: 6.491
- type: precision_at_100
value: 0.935
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 13.744
- type: precision_at_5
value: 10.331999999999999
- type: recall_at_1
value: 21.285
- type: recall_at_10
value: 62.083
- type: recall_at_100
value: 88.576
- type: recall_at_1000
value: 98.006
- type: recall_at_3
value: 39.729
- type: recall_at_5
value: 49.608000000000004
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 93.92612859097127
- type: f1
value: 93.82370333372853
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (de)
type: mteb/mtop_domain
config: de
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 92.67681036911807
- type: f1
value: 92.14191382411472
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (es)
type: mteb/mtop_domain
config: es
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 92.26817878585723
- type: f1
value: 91.92824250337878
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (fr)
type: mteb/mtop_domain
config: fr
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 89.96554963983714
- type: f1
value: 90.02859329630792
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (hi)
type: mteb/mtop_domain
config: hi
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 90.02509860164935
- type: f1
value: 89.30665159182062
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (th)
type: mteb/mtop_domain
config: th
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 87.55515370705244
- type: f1
value: 87.94449232331907
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 82.4623803009576
- type: f1
value: 66.06738378772725
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (de)
type: mteb/mtop_intent
config: de
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 79.3716539870386
- type: f1
value: 60.37614033396853
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (es)
type: mteb/mtop_intent
config: es
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 80.34022681787857
- type: f1
value: 58.302008026952
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (fr)
type: mteb/mtop_intent
config: fr
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 76.72095208268087
- type: f1
value: 59.64524724009049
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (hi)
type: mteb/mtop_intent
config: hi
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 77.87020437432773
- type: f1
value: 57.80202694670567
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (th)
type: mteb/mtop_intent
config: th
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 77.73598553345387
- type: f1
value: 58.19628250675031
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (af)
type: mteb/amazon_massive_intent
config: af
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.6630800268998
- type: f1
value: 65.00996668051691
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (am)
type: mteb/amazon_massive_intent
config: am
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 60.7128446536651
- type: f1
value: 57.95860594874963
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ar)
type: mteb/amazon_massive_intent
config: ar
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.61129791526563
- type: f1
value: 59.75328290206483
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (az)
type: mteb/amazon_massive_intent
config: az
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.00134498991257
- type: f1
value: 67.0230483991802
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (bn)
type: mteb/amazon_massive_intent
config: bn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.54068594485541
- type: f1
value: 65.54604628946976
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (cy)
type: mteb/amazon_massive_intent
config: cy
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.032952252858095
- type: f1
value: 58.715741857057104
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (da)
type: mteb/amazon_massive_intent
config: da
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.80901143241427
- type: f1
value: 68.33963989243877
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (de)
type: mteb/amazon_massive_intent
config: de
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 72.47141896435777
- type: f1
value: 69.56765020308262
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (el)
type: mteb/amazon_massive_intent
config: el
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.2373907195696
- type: f1
value: 69.04529836036467
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 77.05783456624076
- type: f1
value: 74.69430584708174
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (es)
type: mteb/amazon_massive_intent
config: es
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 72.82111634162744
- type: f1
value: 70.77228952803762
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fa)
type: mteb/amazon_massive_intent
config: fa
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 74.25353059852051
- type: f1
value: 71.05310103416411
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fi)
type: mteb/amazon_massive_intent
config: fi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 72.28648285137861
- type: f1
value: 69.08020473732226
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fr)
type: mteb/amazon_massive_intent
config: fr
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.31540013449899
- type: f1
value: 70.9426355465791
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (he)
type: mteb/amazon_massive_intent
config: he
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.2151983860121
- type: f1
value: 67.52541755908858
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (hi)
type: mteb/amazon_massive_intent
config: hi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.58372562205784
- type: f1
value: 69.49769064229827
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (hu)
type: mteb/amazon_massive_intent
config: hu
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.9233355749832
- type: f1
value: 69.36311548259593
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (hy)
type: mteb/amazon_massive_intent
config: hy
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.07330195023538
- type: f1
value: 64.99882022345572
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (id)
type: mteb/amazon_massive_intent
config: id
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 72.62273032952253
- type: f1
value: 70.6394885471001
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (is)
type: mteb/amazon_massive_intent
config: is
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 65.77000672494957
- type: f1
value: 62.9368944815065
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (it)
type: mteb/amazon_massive_intent
config: it
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.453261600538
- type: f1
value: 70.85069934666681
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ja)
type: mteb/amazon_massive_intent
config: ja
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 74.6906523201076
- type: f1
value: 72.03249740074217
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (jv)
type: mteb/amazon_massive_intent
config: jv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.03631472763953
- type: f1
value: 59.3165215571852
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ka)
type: mteb/amazon_massive_intent
config: ka
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 58.913920645595155
- type: f1
value: 57.367337711611285
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (km)
type: mteb/amazon_massive_intent
config: km
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 54.42837928715535
- type: f1
value: 52.60527294970906
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (kn)
type: mteb/amazon_massive_intent
config: kn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.33490248823135
- type: f1
value: 63.213340969404065
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ko)
type: mteb/amazon_massive_intent
config: ko
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.58507061197041
- type: f1
value: 68.40256628040486
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (lv)
type: mteb/amazon_massive_intent
config: lv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.11230665770006
- type: f1
value: 66.44863577842305
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ml)
type: mteb/amazon_massive_intent
config: ml
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.70073974445192
- type: f1
value: 67.21291337273702
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (mn)
type: mteb/amazon_massive_intent
config: mn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.43913920645595
- type: f1
value: 64.09838087422806
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ms)
type: mteb/amazon_massive_intent
config: ms
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.80026899798251
- type: f1
value: 68.76986742962444
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (my)
type: mteb/amazon_massive_intent
config: my
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.78816408876934
- type: f1
value: 62.18781873428972
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (nb)
type: mteb/amazon_massive_intent
config: nb
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.6577000672495
- type: f1
value: 68.75171511133003
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (nl)
type: mteb/amazon_massive_intent
config: nl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 74.42501681237391
- type: f1
value: 71.18434963451544
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (pl)
type: mteb/amazon_massive_intent
config: pl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.64828513786146
- type: f1
value: 70.67741914007422
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (pt)
type: mteb/amazon_massive_intent
config: pt
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.62811028917284
- type: f1
value: 71.36402039740959
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ro)
type: mteb/amazon_massive_intent
config: ro
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.88634835238736
- type: f1
value: 69.23701923480677
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ru)
type: mteb/amazon_massive_intent
config: ru
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 74.15938130464022
- type: f1
value: 71.87792218993388
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sl)
type: mteb/amazon_massive_intent
config: sl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.96301277740416
- type: f1
value: 67.29584200202983
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sq)
type: mteb/amazon_massive_intent
config: sq
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.49562878278412
- type: f1
value: 66.91716685679431
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sv)
type: mteb/amazon_massive_intent
config: sv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 74.6805648957633
- type: f1
value: 72.02723592594374
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sw)
type: mteb/amazon_massive_intent
config: sw
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.00605245460659
- type: f1
value: 60.16716669482932
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ta)
type: mteb/amazon_massive_intent
config: ta
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.90988567585742
- type: f1
value: 63.99405488777784
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (te)
type: mteb/amazon_massive_intent
config: te
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.62273032952253
- type: f1
value: 65.17213906909481
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (th)
type: mteb/amazon_massive_intent
config: th
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.50907868190988
- type: f1
value: 69.15165697194853
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (tl)
type: mteb/amazon_massive_intent
config: tl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.30733019502352
- type: f1
value: 66.69024007380474
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (tr)
type: mteb/amazon_massive_intent
config: tr
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 72.24277067921989
- type: f1
value: 68.80515408492947
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ur)
type: mteb/amazon_massive_intent
config: ur
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.49831876260929
- type: f1
value: 64.83778567111116
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (vi)
type: mteb/amazon_massive_intent
config: vi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.28782784129119
- type: f1
value: 69.3294186700733
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (zh-CN)
type: mteb/amazon_massive_intent
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 73.315400134499
- type: f1
value: 71.22674385243207
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (zh-TW)
type: mteb/amazon_massive_intent
config: zh-TW
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.37794216543377
- type: f1
value: 68.96962492838232
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (af)
type: mteb/amazon_massive_scenario
config: af
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.33557498318764
- type: f1
value: 72.28949738478356
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (am)
type: mteb/amazon_massive_scenario
config: am
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 65.84398117014123
- type: f1
value: 64.71026362091463
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ar)
type: mteb/amazon_massive_scenario
config: ar
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.76462676529925
- type: f1
value: 69.8229667407667
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (az)
type: mteb/amazon_massive_scenario
config: az
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.02420981842636
- type: f1
value: 71.76576384895898
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (bn)
type: mteb/amazon_massive_scenario
config: bn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.7572293207801
- type: f1
value: 72.76840765295256
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (cy)
type: mteb/amazon_massive_scenario
config: cy
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.02286482851379
- type: f1
value: 66.17237947327872
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (da)
type: mteb/amazon_massive_scenario
config: da
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.60928043039678
- type: f1
value: 77.27094731234773
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (de)
type: mteb/amazon_massive_scenario
config: de
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.68325487558843
- type: f1
value: 77.97530399082261
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (el)
type: mteb/amazon_massive_scenario
config: el
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 76.13315400134498
- type: f1
value: 75.97558584796424
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 80.47410894418292
- type: f1
value: 80.52244841473792
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (es)
type: mteb/amazon_massive_scenario
config: es
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 76.9670477471419
- type: f1
value: 77.37318805793146
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fa)
type: mteb/amazon_massive_scenario
config: fa
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 78.09683927370544
- type: f1
value: 77.69773737430847
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fi)
type: mteb/amazon_massive_scenario
config: fi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.20847343644922
- type: f1
value: 75.17071738727348
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fr)
type: mteb/amazon_massive_scenario
config: fr
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.07464694014796
- type: f1
value: 77.16136207698571
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (he)
type: mteb/amazon_massive_scenario
config: he
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.53396099529255
- type: f1
value: 73.58296404484122
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (hi)
type: mteb/amazon_massive_scenario
config: hi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.75319435104237
- type: f1
value: 75.24674707850833
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (hu)
type: mteb/amazon_massive_scenario
config: hu
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.0948217888366
- type: f1
value: 76.47559490205028
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (hy)
type: mteb/amazon_massive_scenario
config: hy
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.07599193006052
- type: f1
value: 70.76028043093511
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (id)
type: mteb/amazon_massive_scenario
config: id
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.10490921318089
- type: f1
value: 77.01215275283272
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (is)
type: mteb/amazon_massive_scenario
config: is
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.25756556825824
- type: f1
value: 70.20605314648762
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (it)
type: mteb/amazon_massive_scenario
config: it
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.08137188971082
- type: f1
value: 77.3899269057439
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ja)
type: mteb/amazon_massive_scenario
config: ja
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 79.35440484196369
- type: f1
value: 79.58964690002772
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (jv)
type: mteb/amazon_massive_scenario
config: jv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.42299932750504
- type: f1
value: 68.07844356925413
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ka)
type: mteb/amazon_massive_scenario
config: ka
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 66.15669132481507
- type: f1
value: 65.89383352608513
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (km)
type: mteb/amazon_massive_scenario
config: km
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 60.11432414256894
- type: f1
value: 57.69910594559806
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (kn)
type: mteb/amazon_massive_scenario
config: kn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.24747814391392
- type: f1
value: 70.42455553830918
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ko)
type: mteb/amazon_massive_scenario
config: ko
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 76.46267652992603
- type: f1
value: 76.8854559308316
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (lv)
type: mteb/amazon_massive_scenario
config: lv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.24815063887021
- type: f1
value: 72.77805034658074
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ml)
type: mteb/amazon_massive_scenario
config: ml
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.11566913248151
- type: f1
value: 73.86147988001356
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (mn)
type: mteb/amazon_massive_scenario
config: mn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.0168123739072
- type: f1
value: 69.38515920054571
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ms)
type: mteb/amazon_massive_scenario
config: ms
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.41156691324814
- type: f1
value: 73.43474953408237
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (my)
type: mteb/amazon_massive_scenario
config: my
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.39609952925353
- type: f1
value: 67.29731681109291
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (nb)
type: mteb/amazon_massive_scenario
config: nb
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.20914593140552
- type: f1
value: 77.07066497935367
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (nl)
type: mteb/amazon_massive_scenario
config: nl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 78.52387357094821
- type: f1
value: 78.5259569473291
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (pl)
type: mteb/amazon_massive_scenario
config: pl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 76.6913248150639
- type: f1
value: 76.91201656350455
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (pt)
type: mteb/amazon_massive_scenario
config: pt
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.1217215870881
- type: f1
value: 77.41179937912504
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ro)
type: mteb/amazon_massive_scenario
config: ro
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.25891055817083
- type: f1
value: 75.8089244542887
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ru)
type: mteb/amazon_massive_scenario
config: ru
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.70679219905851
- type: f1
value: 78.21459594517711
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sl)
type: mteb/amazon_massive_scenario
config: sl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.83523873570948
- type: f1
value: 74.86847028401978
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sq)
type: mteb/amazon_massive_scenario
config: sq
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.71755211835911
- type: f1
value: 74.0214326485662
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sv)
type: mteb/amazon_massive_scenario
config: sv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 79.06523201075991
- type: f1
value: 79.10545620325138
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sw)
type: mteb/amazon_massive_scenario
config: sw
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.91862811028918
- type: f1
value: 66.50386121217983
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ta)
type: mteb/amazon_massive_scenario
config: ta
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.93140551445865
- type: f1
value: 70.755435928495
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (te)
type: mteb/amazon_massive_scenario
config: te
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.40753194351042
- type: f1
value: 71.61816115782923
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (th)
type: mteb/amazon_massive_scenario
config: th
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.1815736381977
- type: f1
value: 75.08016717887205
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (tl)
type: mteb/amazon_massive_scenario
config: tl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.86482851378614
- type: f1
value: 72.39521180006291
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (tr)
type: mteb/amazon_massive_scenario
config: tr
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 76.46940147948891
- type: f1
value: 76.70044085362349
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ur)
type: mteb/amazon_massive_scenario
config: ur
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.89307330195024
- type: f1
value: 71.5721825332298
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (vi)
type: mteb/amazon_massive_scenario
config: vi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.7511768661735
- type: f1
value: 75.17918654541515
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (zh-CN)
type: mteb/amazon_massive_scenario
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 78.69535978480162
- type: f1
value: 78.90019070153316
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (zh-TW)
type: mteb/amazon_massive_scenario
config: zh-TW
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.45729657027572
- type: f1
value: 76.19578371794672
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 36.92715354123554
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 35.53536244162518
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 33.08507884504006
- type: mrr
value: 34.32436977159129
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: nfcorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.935
- type: map_at_10
value: 13.297
- type: map_at_100
value: 16.907
- type: map_at_1000
value: 18.391
- type: map_at_3
value: 9.626999999999999
- type: map_at_5
value: 11.190999999999999
- type: mrr_at_1
value: 46.129999999999995
- type: mrr_at_10
value: 54.346000000000004
- type: mrr_at_100
value: 55.067
- type: mrr_at_1000
value: 55.1
- type: mrr_at_3
value: 51.961
- type: mrr_at_5
value: 53.246
- type: ndcg_at_1
value: 44.118
- type: ndcg_at_10
value: 35.534
- type: ndcg_at_100
value: 32.946999999999996
- type: ndcg_at_1000
value: 41.599000000000004
- type: ndcg_at_3
value: 40.25
- type: ndcg_at_5
value: 37.978
- type: precision_at_1
value: 46.129999999999995
- type: precision_at_10
value: 26.842
- type: precision_at_100
value: 8.427
- type: precision_at_1000
value: 2.128
- type: precision_at_3
value: 37.977
- type: precision_at_5
value: 32.879000000000005
- type: recall_at_1
value: 5.935
- type: recall_at_10
value: 17.211000000000002
- type: recall_at_100
value: 34.33
- type: recall_at_1000
value: 65.551
- type: recall_at_3
value: 10.483
- type: recall_at_5
value: 13.078999999999999
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: nq
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 35.231
- type: map_at_10
value: 50.202000000000005
- type: map_at_100
value: 51.154999999999994
- type: map_at_1000
value: 51.181
- type: map_at_3
value: 45.774
- type: map_at_5
value: 48.522
- type: mrr_at_1
value: 39.687
- type: mrr_at_10
value: 52.88
- type: mrr_at_100
value: 53.569
- type: mrr_at_1000
value: 53.58500000000001
- type: mrr_at_3
value: 49.228
- type: mrr_at_5
value: 51.525
- type: ndcg_at_1
value: 39.687
- type: ndcg_at_10
value: 57.754000000000005
- type: ndcg_at_100
value: 61.597
- type: ndcg_at_1000
value: 62.18900000000001
- type: ndcg_at_3
value: 49.55
- type: ndcg_at_5
value: 54.11899999999999
- type: precision_at_1
value: 39.687
- type: precision_at_10
value: 9.313
- type: precision_at_100
value: 1.146
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 22.229
- type: precision_at_5
value: 15.939
- type: recall_at_1
value: 35.231
- type: recall_at_10
value: 78.083
- type: recall_at_100
value: 94.42099999999999
- type: recall_at_1000
value: 98.81
- type: recall_at_3
value: 57.047000000000004
- type: recall_at_5
value: 67.637
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: quora
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 71.241
- type: map_at_10
value: 85.462
- type: map_at_100
value: 86.083
- type: map_at_1000
value: 86.09700000000001
- type: map_at_3
value: 82.49499999999999
- type: map_at_5
value: 84.392
- type: mrr_at_1
value: 82.09
- type: mrr_at_10
value: 88.301
- type: mrr_at_100
value: 88.383
- type: mrr_at_1000
value: 88.384
- type: mrr_at_3
value: 87.37
- type: mrr_at_5
value: 88.035
- type: ndcg_at_1
value: 82.12
- type: ndcg_at_10
value: 89.149
- type: ndcg_at_100
value: 90.235
- type: ndcg_at_1000
value: 90.307
- type: ndcg_at_3
value: 86.37599999999999
- type: ndcg_at_5
value: 87.964
- type: precision_at_1
value: 82.12
- type: precision_at_10
value: 13.56
- type: precision_at_100
value: 1.539
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.88
- type: precision_at_5
value: 24.92
- type: recall_at_1
value: 71.241
- type: recall_at_10
value: 96.128
- type: recall_at_100
value: 99.696
- type: recall_at_1000
value: 99.994
- type: recall_at_3
value: 88.181
- type: recall_at_5
value: 92.694
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 56.59757799655151
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 64.27391998854624
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: scidocs
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.243
- type: map_at_10
value: 10.965
- type: map_at_100
value: 12.934999999999999
- type: map_at_1000
value: 13.256
- type: map_at_3
value: 7.907
- type: map_at_5
value: 9.435
- type: mrr_at_1
value: 20.9
- type: mrr_at_10
value: 31.849
- type: mrr_at_100
value: 32.964
- type: mrr_at_1000
value: 33.024
- type: mrr_at_3
value: 28.517
- type: mrr_at_5
value: 30.381999999999998
- type: ndcg_at_1
value: 20.9
- type: ndcg_at_10
value: 18.723
- type: ndcg_at_100
value: 26.384999999999998
- type: ndcg_at_1000
value: 32.114
- type: ndcg_at_3
value: 17.753
- type: ndcg_at_5
value: 15.558
- type: precision_at_1
value: 20.9
- type: precision_at_10
value: 9.8
- type: precision_at_100
value: 2.078
- type: precision_at_1000
value: 0.345
- type: precision_at_3
value: 16.900000000000002
- type: precision_at_5
value: 13.88
- type: recall_at_1
value: 4.243
- type: recall_at_10
value: 19.885
- type: recall_at_100
value: 42.17
- type: recall_at_1000
value: 70.12
- type: recall_at_3
value: 10.288
- type: recall_at_5
value: 14.072000000000001
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 85.84209174935282
- type: cos_sim_spearman
value: 81.73248048438833
- type: euclidean_pearson
value: 83.02810070308149
- type: euclidean_spearman
value: 81.73248295679514
- type: manhattan_pearson
value: 82.95368060376002
- type: manhattan_spearman
value: 81.60277910998718
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 88.52628804556943
- type: cos_sim_spearman
value: 82.5713913555672
- type: euclidean_pearson
value: 85.8796774746988
- type: euclidean_spearman
value: 82.57137506803424
- type: manhattan_pearson
value: 85.79671002960058
- type: manhattan_spearman
value: 82.49445981618027
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 86.23682503505542
- type: cos_sim_spearman
value: 87.15008956711806
- type: euclidean_pearson
value: 86.79805401524959
- type: euclidean_spearman
value: 87.15008956711806
- type: manhattan_pearson
value: 86.65298502699244
- type: manhattan_spearman
value: 86.97677821948562
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 85.63370304677802
- type: cos_sim_spearman
value: 84.97105553540318
- type: euclidean_pearson
value: 85.28896108687721
- type: euclidean_spearman
value: 84.97105553540318
- type: manhattan_pearson
value: 85.09663190337331
- type: manhattan_spearman
value: 84.79126831644619
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 90.2614838800733
- type: cos_sim_spearman
value: 91.0509162991835
- type: euclidean_pearson
value: 90.33098317533373
- type: euclidean_spearman
value: 91.05091625871644
- type: manhattan_pearson
value: 90.26250435151107
- type: manhattan_spearman
value: 90.97999594417519
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 85.80480973335091
- type: cos_sim_spearman
value: 87.313695492969
- type: euclidean_pearson
value: 86.49267251576939
- type: euclidean_spearman
value: 87.313695492969
- type: manhattan_pearson
value: 86.44019901831935
- type: manhattan_spearman
value: 87.24205395460392
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 90.05662789380672
- type: cos_sim_spearman
value: 90.02759424426651
- type: euclidean_pearson
value: 90.4042483422981
- type: euclidean_spearman
value: 90.02759424426651
- type: manhattan_pearson
value: 90.51446975000226
- type: manhattan_spearman
value: 90.08832889933616
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 67.5975528273532
- type: cos_sim_spearman
value: 67.62969861411354
- type: euclidean_pearson
value: 69.224275734323
- type: euclidean_spearman
value: 67.62969861411354
- type: manhattan_pearson
value: 69.3761447059927
- type: manhattan_spearman
value: 67.90921005611467
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 87.11244327231684
- type: cos_sim_spearman
value: 88.37902438979035
- type: euclidean_pearson
value: 87.86054279847336
- type: euclidean_spearman
value: 88.37902438979035
- type: manhattan_pearson
value: 87.77257757320378
- type: manhattan_spearman
value: 88.25208966098123
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 85.87174608143563
- type: mrr
value: 96.12836872640794
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: scifact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 57.760999999999996
- type: map_at_10
value: 67.258
- type: map_at_100
value: 67.757
- type: map_at_1000
value: 67.78800000000001
- type: map_at_3
value: 64.602
- type: map_at_5
value: 65.64
- type: mrr_at_1
value: 60.667
- type: mrr_at_10
value: 68.441
- type: mrr_at_100
value: 68.825
- type: mrr_at_1000
value: 68.853
- type: mrr_at_3
value: 66.444
- type: mrr_at_5
value: 67.26100000000001
- type: ndcg_at_1
value: 60.667
- type: ndcg_at_10
value: 71.852
- type: ndcg_at_100
value: 73.9
- type: ndcg_at_1000
value: 74.628
- type: ndcg_at_3
value: 67.093
- type: ndcg_at_5
value: 68.58
- type: precision_at_1
value: 60.667
- type: precision_at_10
value: 9.6
- type: precision_at_100
value: 1.0670000000000002
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 26.111
- type: precision_at_5
value: 16.733
- type: recall_at_1
value: 57.760999999999996
- type: recall_at_10
value: 84.967
- type: recall_at_100
value: 93.833
- type: recall_at_1000
value: 99.333
- type: recall_at_3
value: 71.589
- type: recall_at_5
value: 75.483
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.66633663366336
- type: cos_sim_ap
value: 91.17685358899108
- type: cos_sim_f1
value: 82.16818642350559
- type: cos_sim_precision
value: 83.26488706365504
- type: cos_sim_recall
value: 81.10000000000001
- type: dot_accuracy
value: 99.66633663366336
- type: dot_ap
value: 91.17663411119032
- type: dot_f1
value: 82.16818642350559
- type: dot_precision
value: 83.26488706365504
- type: dot_recall
value: 81.10000000000001
- type: euclidean_accuracy
value: 99.66633663366336
- type: euclidean_ap
value: 91.17685189882275
- type: euclidean_f1
value: 82.16818642350559
- type: euclidean_precision
value: 83.26488706365504
- type: euclidean_recall
value: 81.10000000000001
- type: manhattan_accuracy
value: 99.66633663366336
- type: manhattan_ap
value: 91.2241619496737
- type: manhattan_f1
value: 82.20472440944883
- type: manhattan_precision
value: 86.51933701657458
- type: manhattan_recall
value: 78.3
- type: max_accuracy
value: 99.66633663366336
- type: max_ap
value: 91.2241619496737
- type: max_f1
value: 82.20472440944883
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 66.85101268897951
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 42.461184054706905
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 51.44542568873886
- type: mrr
value: 52.33656151854681
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.75982974997539
- type: cos_sim_spearman
value: 30.385405026539914
- type: dot_pearson
value: 30.75982433546523
- type: dot_spearman
value: 30.385405026539914
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: trec-covid
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.22799999999999998
- type: map_at_10
value: 2.064
- type: map_at_100
value: 13.056000000000001
- type: map_at_1000
value: 31.747999999999998
- type: map_at_3
value: 0.67
- type: map_at_5
value: 1.097
- type: mrr_at_1
value: 90.0
- type: mrr_at_10
value: 94.667
- type: mrr_at_100
value: 94.667
- type: mrr_at_1000
value: 94.667
- type: mrr_at_3
value: 94.667
- type: mrr_at_5
value: 94.667
- type: ndcg_at_1
value: 86.0
- type: ndcg_at_10
value: 82.0
- type: ndcg_at_100
value: 64.307
- type: ndcg_at_1000
value: 57.023999999999994
- type: ndcg_at_3
value: 85.816
- type: ndcg_at_5
value: 84.904
- type: precision_at_1
value: 90.0
- type: precision_at_10
value: 85.8
- type: precision_at_100
value: 66.46
- type: precision_at_1000
value: 25.202
- type: precision_at_3
value: 90.0
- type: precision_at_5
value: 89.2
- type: recall_at_1
value: 0.22799999999999998
- type: recall_at_10
value: 2.235
- type: recall_at_100
value: 16.185
- type: recall_at_1000
value: 53.620999999999995
- type: recall_at_3
value: 0.7040000000000001
- type: recall_at_5
value: 1.172
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (sqi-eng)
type: mteb/tatoeba-bitext-mining
config: sqi-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.39999999999999
- type: f1
value: 96.75
- type: precision
value: 96.45
- type: recall
value: 97.39999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fry-eng)
type: mteb/tatoeba-bitext-mining
config: fry-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 85.54913294797689
- type: f1
value: 82.46628131021194
- type: precision
value: 81.1175337186898
- type: recall
value: 85.54913294797689
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kur-eng)
type: mteb/tatoeba-bitext-mining
config: kur-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 81.21951219512195
- type: f1
value: 77.33333333333334
- type: precision
value: 75.54878048780488
- type: recall
value: 81.21951219512195
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tur-eng)
type: mteb/tatoeba-bitext-mining
config: tur-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.6
- type: f1
value: 98.26666666666665
- type: precision
value: 98.1
- type: recall
value: 98.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (deu-eng)
type: mteb/tatoeba-bitext-mining
config: deu-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 99.5
- type: f1
value: 99.33333333333333
- type: precision
value: 99.25
- type: recall
value: 99.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nld-eng)
type: mteb/tatoeba-bitext-mining
config: nld-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.8
- type: f1
value: 97.2
- type: precision
value: 96.89999999999999
- type: recall
value: 97.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ron-eng)
type: mteb/tatoeba-bitext-mining
config: ron-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.8
- type: f1
value: 97.18333333333334
- type: precision
value: 96.88333333333333
- type: recall
value: 97.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ang-eng)
type: mteb/tatoeba-bitext-mining
config: ang-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 77.61194029850746
- type: f1
value: 72.81094527363183
- type: precision
value: 70.83333333333333
- type: recall
value: 77.61194029850746
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ido-eng)
type: mteb/tatoeba-bitext-mining
config: ido-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.7
- type: f1
value: 91.91666666666667
- type: precision
value: 91.08333333333334
- type: recall
value: 93.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (jav-eng)
type: mteb/tatoeba-bitext-mining
config: jav-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.29268292682927
- type: f1
value: 85.27642276422765
- type: precision
value: 84.01277584204414
- type: recall
value: 88.29268292682927
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (isl-eng)
type: mteb/tatoeba-bitext-mining
config: isl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.1
- type: f1
value: 95.0
- type: precision
value: 94.46666666666668
- type: recall
value: 96.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (slv-eng)
type: mteb/tatoeba-bitext-mining
config: slv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.681652490887
- type: f1
value: 91.90765492102065
- type: precision
value: 91.05913325232888
- type: recall
value: 93.681652490887
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cym-eng)
type: mteb/tatoeba-bitext-mining
config: cym-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.17391304347827
- type: f1
value: 89.97101449275361
- type: precision
value: 88.96811594202899
- type: recall
value: 92.17391304347827
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kaz-eng)
type: mteb/tatoeba-bitext-mining
config: kaz-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.43478260869566
- type: f1
value: 87.72173913043478
- type: precision
value: 86.42028985507245
- type: recall
value: 90.43478260869566
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (est-eng)
type: mteb/tatoeba-bitext-mining
config: est-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.4
- type: f1
value: 88.03
- type: precision
value: 86.95
- type: recall
value: 90.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (heb-eng)
type: mteb/tatoeba-bitext-mining
config: heb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.4
- type: f1
value: 91.45666666666666
- type: precision
value: 90.525
- type: recall
value: 93.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (gla-eng)
type: mteb/tatoeba-bitext-mining
config: gla-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 81.9059107358263
- type: f1
value: 78.32557872364869
- type: precision
value: 76.78260286824823
- type: recall
value: 81.9059107358263
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mar-eng)
type: mteb/tatoeba-bitext-mining
config: mar-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.3
- type: f1
value: 92.58333333333333
- type: precision
value: 91.73333333333332
- type: recall
value: 94.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lat-eng)
type: mteb/tatoeba-bitext-mining
config: lat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 79.10000000000001
- type: f1
value: 74.50500000000001
- type: precision
value: 72.58928571428571
- type: recall
value: 79.10000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bel-eng)
type: mteb/tatoeba-bitext-mining
config: bel-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.6
- type: f1
value: 95.55
- type: precision
value: 95.05
- type: recall
value: 96.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pms-eng)
type: mteb/tatoeba-bitext-mining
config: pms-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 82.0952380952381
- type: f1
value: 77.98458049886621
- type: precision
value: 76.1968253968254
- type: recall
value: 82.0952380952381
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (gle-eng)
type: mteb/tatoeba-bitext-mining
config: gle-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.9
- type: f1
value: 84.99190476190476
- type: precision
value: 83.65
- type: recall
value: 87.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pes-eng)
type: mteb/tatoeba-bitext-mining
config: pes-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.7
- type: f1
value: 94.56666666666666
- type: precision
value: 94.01666666666667
- type: recall
value: 95.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nob-eng)
type: mteb/tatoeba-bitext-mining
config: nob-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.6
- type: f1
value: 98.2
- type: precision
value: 98.0
- type: recall
value: 98.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bul-eng)
type: mteb/tatoeba-bitext-mining
config: bul-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.6
- type: f1
value: 94.38333333333334
- type: precision
value: 93.78333333333335
- type: recall
value: 95.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cbk-eng)
type: mteb/tatoeba-bitext-mining
config: cbk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.4
- type: f1
value: 84.10380952380952
- type: precision
value: 82.67
- type: recall
value: 87.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hun-eng)
type: mteb/tatoeba-bitext-mining
config: hun-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.5
- type: f1
value: 94.33333333333334
- type: precision
value: 93.78333333333333
- type: recall
value: 95.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (uig-eng)
type: mteb/tatoeba-bitext-mining
config: uig-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.4
- type: f1
value: 86.82000000000001
- type: precision
value: 85.64500000000001
- type: recall
value: 89.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (rus-eng)
type: mteb/tatoeba-bitext-mining
config: rus-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.1
- type: f1
value: 93.56666666666668
- type: precision
value: 92.81666666666666
- type: recall
value: 95.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (spa-eng)
type: mteb/tatoeba-bitext-mining
config: spa-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.9
- type: f1
value: 98.6
- type: precision
value: 98.45
- type: recall
value: 98.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hye-eng)
type: mteb/tatoeba-bitext-mining
config: hye-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.01347708894879
- type: f1
value: 93.51752021563343
- type: precision
value: 92.82794249775381
- type: recall
value: 95.01347708894879
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tel-eng)
type: mteb/tatoeba-bitext-mining
config: tel-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.00854700854701
- type: f1
value: 96.08262108262107
- type: precision
value: 95.65527065527067
- type: recall
value: 97.00854700854701
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (afr-eng)
type: mteb/tatoeba-bitext-mining
config: afr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.5
- type: f1
value: 95.39999999999999
- type: precision
value: 94.88333333333333
- type: recall
value: 96.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mon-eng)
type: mteb/tatoeba-bitext-mining
config: mon-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.5909090909091
- type: f1
value: 95.49242424242425
- type: precision
value: 94.9621212121212
- type: recall
value: 96.5909090909091
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (arz-eng)
type: mteb/tatoeba-bitext-mining
config: arz-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 84.90566037735849
- type: f1
value: 81.85883997204752
- type: precision
value: 80.54507337526205
- type: recall
value: 84.90566037735849
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hrv-eng)
type: mteb/tatoeba-bitext-mining
config: hrv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.5
- type: f1
value: 96.75
- type: precision
value: 96.38333333333333
- type: recall
value: 97.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nov-eng)
type: mteb/tatoeba-bitext-mining
config: nov-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 86.7704280155642
- type: f1
value: 82.99610894941635
- type: precision
value: 81.32295719844358
- type: recall
value: 86.7704280155642
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (gsw-eng)
type: mteb/tatoeba-bitext-mining
config: gsw-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 67.52136752136752
- type: f1
value: 61.89662189662191
- type: precision
value: 59.68660968660969
- type: recall
value: 67.52136752136752
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nds-eng)
type: mteb/tatoeba-bitext-mining
config: nds-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.2
- type: f1
value: 86.32
- type: precision
value: 85.015
- type: recall
value: 89.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ukr-eng)
type: mteb/tatoeba-bitext-mining
config: ukr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.0
- type: f1
value: 94.78333333333333
- type: precision
value: 94.18333333333334
- type: recall
value: 96.0
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (uzb-eng)
type: mteb/tatoeba-bitext-mining
config: uzb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 83.8785046728972
- type: f1
value: 80.54517133956385
- type: precision
value: 79.154984423676
- type: recall
value: 83.8785046728972
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lit-eng)
type: mteb/tatoeba-bitext-mining
config: lit-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.60000000000001
- type: f1
value: 92.01333333333334
- type: precision
value: 91.28333333333333
- type: recall
value: 93.60000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ina-eng)
type: mteb/tatoeba-bitext-mining
config: ina-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.1
- type: f1
value: 96.26666666666667
- type: precision
value: 95.85000000000001
- type: recall
value: 97.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lfn-eng)
type: mteb/tatoeba-bitext-mining
config: lfn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 84.3
- type: f1
value: 80.67833333333333
- type: precision
value: 79.03928571428571
- type: recall
value: 84.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (zsm-eng)
type: mteb/tatoeba-bitext-mining
config: zsm-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.3
- type: f1
value: 96.48333333333332
- type: precision
value: 96.08333333333331
- type: recall
value: 97.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ita-eng)
type: mteb/tatoeba-bitext-mining
config: ita-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.7
- type: f1
value: 94.66666666666667
- type: precision
value: 94.16666666666667
- type: recall
value: 95.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cmn-eng)
type: mteb/tatoeba-bitext-mining
config: cmn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.2
- type: f1
value: 96.36666666666667
- type: precision
value: 95.96666666666668
- type: recall
value: 97.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lvs-eng)
type: mteb/tatoeba-bitext-mining
config: lvs-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.3
- type: f1
value: 92.80666666666667
- type: precision
value: 92.12833333333333
- type: recall
value: 94.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (glg-eng)
type: mteb/tatoeba-bitext-mining
config: glg-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.0
- type: f1
value: 96.22333333333334
- type: precision
value: 95.875
- type: recall
value: 97.0
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ceb-eng)
type: mteb/tatoeba-bitext-mining
config: ceb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 74.33333333333333
- type: f1
value: 70.78174603174602
- type: precision
value: 69.28333333333332
- type: recall
value: 74.33333333333333
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bre-eng)
type: mteb/tatoeba-bitext-mining
config: bre-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 37.6
- type: f1
value: 32.938348952090365
- type: precision
value: 31.2811038961039
- type: recall
value: 37.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ben-eng)
type: mteb/tatoeba-bitext-mining
config: ben-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91.5
- type: f1
value: 89.13333333333333
- type: precision
value: 88.03333333333333
- type: recall
value: 91.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (swg-eng)
type: mteb/tatoeba-bitext-mining
config: swg-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 82.14285714285714
- type: f1
value: 77.67857142857143
- type: precision
value: 75.59523809523809
- type: recall
value: 82.14285714285714
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (arq-eng)
type: mteb/tatoeba-bitext-mining
config: arq-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 69.0450054884742
- type: f1
value: 63.070409283362075
- type: precision
value: 60.58992781824835
- type: recall
value: 69.0450054884742
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kab-eng)
type: mteb/tatoeba-bitext-mining
config: kab-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 63.1
- type: f1
value: 57.848333333333336
- type: precision
value: 55.69500000000001
- type: recall
value: 63.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fra-eng)
type: mteb/tatoeba-bitext-mining
config: fra-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.1
- type: f1
value: 95.01666666666667
- type: precision
value: 94.5
- type: recall
value: 96.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (por-eng)
type: mteb/tatoeba-bitext-mining
config: por-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.89999999999999
- type: f1
value: 94.90666666666667
- type: precision
value: 94.425
- type: recall
value: 95.89999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tat-eng)
type: mteb/tatoeba-bitext-mining
config: tat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.6
- type: f1
value: 84.61333333333333
- type: precision
value: 83.27
- type: recall
value: 87.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (oci-eng)
type: mteb/tatoeba-bitext-mining
config: oci-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 76.4
- type: f1
value: 71.90746031746032
- type: precision
value: 70.07027777777778
- type: recall
value: 76.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pol-eng)
type: mteb/tatoeba-bitext-mining
config: pol-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.89999999999999
- type: f1
value: 97.26666666666667
- type: precision
value: 96.95
- type: recall
value: 97.89999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (war-eng)
type: mteb/tatoeba-bitext-mining
config: war-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 78.8
- type: f1
value: 74.39555555555555
- type: precision
value: 72.59416666666667
- type: recall
value: 78.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (aze-eng)
type: mteb/tatoeba-bitext-mining
config: aze-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.19999999999999
- type: f1
value: 93.78999999999999
- type: precision
value: 93.125
- type: recall
value: 95.19999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (vie-eng)
type: mteb/tatoeba-bitext-mining
config: vie-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.8
- type: f1
value: 97.1
- type: precision
value: 96.75
- type: recall
value: 97.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nno-eng)
type: mteb/tatoeba-bitext-mining
config: nno-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.6
- type: f1
value: 94.25666666666666
- type: precision
value: 93.64166666666668
- type: recall
value: 95.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cha-eng)
type: mteb/tatoeba-bitext-mining
config: cha-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 56.934306569343065
- type: f1
value: 51.461591936044485
- type: precision
value: 49.37434827945776
- type: recall
value: 56.934306569343065
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mhr-eng)
type: mteb/tatoeba-bitext-mining
config: mhr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 20.200000000000003
- type: f1
value: 16.91799284049284
- type: precision
value: 15.791855158730158
- type: recall
value: 20.200000000000003
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (dan-eng)
type: mteb/tatoeba-bitext-mining
config: dan-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.2
- type: f1
value: 95.3
- type: precision
value: 94.85
- type: recall
value: 96.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ell-eng)
type: mteb/tatoeba-bitext-mining
config: ell-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.3
- type: f1
value: 95.11666666666667
- type: precision
value: 94.53333333333333
- type: recall
value: 96.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (amh-eng)
type: mteb/tatoeba-bitext-mining
config: amh-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.88095238095238
- type: f1
value: 87.14285714285714
- type: precision
value: 85.96230158730161
- type: recall
value: 89.88095238095238
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pam-eng)
type: mteb/tatoeba-bitext-mining
config: pam-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 24.099999999999998
- type: f1
value: 19.630969083349783
- type: precision
value: 18.275094905094907
- type: recall
value: 24.099999999999998
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hsb-eng)
type: mteb/tatoeba-bitext-mining
config: hsb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 83.4368530020704
- type: f1
value: 79.45183870649709
- type: precision
value: 77.7432712215321
- type: recall
value: 83.4368530020704
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (srp-eng)
type: mteb/tatoeba-bitext-mining
config: srp-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.8
- type: f1
value: 94.53333333333333
- type: precision
value: 93.91666666666666
- type: recall
value: 95.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (epo-eng)
type: mteb/tatoeba-bitext-mining
config: epo-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.8
- type: f1
value: 98.48333333333332
- type: precision
value: 98.33333333333334
- type: recall
value: 98.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kzj-eng)
type: mteb/tatoeba-bitext-mining
config: kzj-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 17.5
- type: f1
value: 14.979285714285714
- type: precision
value: 14.23235060690943
- type: recall
value: 17.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (awa-eng)
type: mteb/tatoeba-bitext-mining
config: awa-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.93939393939394
- type: f1
value: 91.991341991342
- type: precision
value: 91.05339105339105
- type: recall
value: 93.93939393939394
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fao-eng)
type: mteb/tatoeba-bitext-mining
config: fao-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.31297709923665
- type: f1
value: 86.76844783715012
- type: precision
value: 85.63613231552164
- type: recall
value: 89.31297709923665
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mal-eng)
type: mteb/tatoeba-bitext-mining
config: mal-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 99.12663755458514
- type: f1
value: 98.93255701115964
- type: precision
value: 98.83551673944687
- type: recall
value: 99.12663755458514
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ile-eng)
type: mteb/tatoeba-bitext-mining
config: ile-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.0
- type: f1
value: 89.77999999999999
- type: precision
value: 88.78333333333333
- type: recall
value: 92.0
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bos-eng)
type: mteb/tatoeba-bitext-mining
config: bos-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.89265536723164
- type: f1
value: 95.85687382297553
- type: precision
value: 95.33898305084746
- type: recall
value: 96.89265536723164
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cor-eng)
type: mteb/tatoeba-bitext-mining
config: cor-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 14.6
- type: f1
value: 11.820611790170615
- type: precision
value: 11.022616224355355
- type: recall
value: 14.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cat-eng)
type: mteb/tatoeba-bitext-mining
config: cat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.89999999999999
- type: f1
value: 94.93333333333334
- type: precision
value: 94.48666666666666
- type: recall
value: 95.89999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (eus-eng)
type: mteb/tatoeba-bitext-mining
config: eus-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.6
- type: f1
value: 84.72333333333334
- type: precision
value: 83.44166666666666
- type: recall
value: 87.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (yue-eng)
type: mteb/tatoeba-bitext-mining
config: yue-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.8
- type: f1
value: 93.47333333333333
- type: precision
value: 92.875
- type: recall
value: 94.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (swe-eng)
type: mteb/tatoeba-bitext-mining
config: swe-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.6
- type: f1
value: 95.71666666666665
- type: precision
value: 95.28333333333335
- type: recall
value: 96.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (dtp-eng)
type: mteb/tatoeba-bitext-mining
config: dtp-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 17.8
- type: f1
value: 14.511074040901628
- type: precision
value: 13.503791000666002
- type: recall
value: 17.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kat-eng)
type: mteb/tatoeba-bitext-mining
config: kat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.10187667560321
- type: f1
value: 92.46648793565683
- type: precision
value: 91.71134941912423
- type: recall
value: 94.10187667560321
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (jpn-eng)
type: mteb/tatoeba-bitext-mining
config: jpn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.0
- type: f1
value: 96.11666666666666
- type: precision
value: 95.68333333333334
- type: recall
value: 97.0
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (csb-eng)
type: mteb/tatoeba-bitext-mining
config: csb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 72.72727272727273
- type: f1
value: 66.58949745906267
- type: precision
value: 63.86693017127799
- type: recall
value: 72.72727272727273
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (xho-eng)
type: mteb/tatoeba-bitext-mining
config: xho-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.14084507042254
- type: f1
value: 88.26291079812206
- type: precision
value: 87.32394366197182
- type: recall
value: 90.14084507042254
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (orv-eng)
type: mteb/tatoeba-bitext-mining
config: orv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 64.67065868263472
- type: f1
value: 58.2876627696987
- type: precision
value: 55.79255774165953
- type: recall
value: 64.67065868263472
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ind-eng)
type: mteb/tatoeba-bitext-mining
config: ind-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.6
- type: f1
value: 94.41666666666667
- type: precision
value: 93.85
- type: recall
value: 95.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tuk-eng)
type: mteb/tatoeba-bitext-mining
config: tuk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 55.172413793103445
- type: f1
value: 49.63992493549144
- type: precision
value: 47.71405113769646
- type: recall
value: 55.172413793103445
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (max-eng)
type: mteb/tatoeba-bitext-mining
config: max-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 77.46478873239437
- type: f1
value: 73.4417616811983
- type: precision
value: 71.91607981220658
- type: recall
value: 77.46478873239437
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (swh-eng)
type: mteb/tatoeba-bitext-mining
config: swh-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 84.61538461538461
- type: f1
value: 80.91452991452994
- type: precision
value: 79.33760683760683
- type: recall
value: 84.61538461538461
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hin-eng)
type: mteb/tatoeba-bitext-mining
config: hin-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 98.2
- type: f1
value: 97.6
- type: precision
value: 97.3
- type: recall
value: 98.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (dsb-eng)
type: mteb/tatoeba-bitext-mining
config: dsb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 75.5741127348643
- type: f1
value: 72.00417536534445
- type: precision
value: 70.53467872883321
- type: recall
value: 75.5741127348643
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ber-eng)
type: mteb/tatoeba-bitext-mining
config: ber-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 62.2
- type: f1
value: 55.577460317460314
- type: precision
value: 52.98583333333333
- type: recall
value: 62.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tam-eng)
type: mteb/tatoeba-bitext-mining
config: tam-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.18241042345277
- type: f1
value: 90.6468124709167
- type: precision
value: 89.95656894679696
- type: recall
value: 92.18241042345277
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (slk-eng)
type: mteb/tatoeba-bitext-mining
config: slk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.1
- type: f1
value: 95.13333333333333
- type: precision
value: 94.66666666666667
- type: recall
value: 96.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tgl-eng)
type: mteb/tatoeba-bitext-mining
config: tgl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.8
- type: f1
value: 95.85000000000001
- type: precision
value: 95.39999999999999
- type: recall
value: 96.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ast-eng)
type: mteb/tatoeba-bitext-mining
config: ast-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.1259842519685
- type: f1
value: 89.76377952755905
- type: precision
value: 88.71391076115485
- type: recall
value: 92.1259842519685
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mkd-eng)
type: mteb/tatoeba-bitext-mining
config: mkd-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.1
- type: f1
value: 92.49
- type: precision
value: 91.725
- type: recall
value: 94.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (khm-eng)
type: mteb/tatoeba-bitext-mining
config: khm-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 77.5623268698061
- type: f1
value: 73.27364463791058
- type: precision
value: 71.51947852086357
- type: recall
value: 77.5623268698061
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ces-eng)
type: mteb/tatoeba-bitext-mining
config: ces-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.39999999999999
- type: f1
value: 96.56666666666666
- type: precision
value: 96.16666666666667
- type: recall
value: 97.39999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tzl-eng)
type: mteb/tatoeba-bitext-mining
config: tzl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 66.34615384615384
- type: f1
value: 61.092032967032964
- type: precision
value: 59.27197802197802
- type: recall
value: 66.34615384615384
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (urd-eng)
type: mteb/tatoeba-bitext-mining
config: urd-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.89999999999999
- type: f1
value: 93.41190476190476
- type: precision
value: 92.7
- type: recall
value: 94.89999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ara-eng)
type: mteb/tatoeba-bitext-mining
config: ara-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.10000000000001
- type: f1
value: 91.10000000000001
- type: precision
value: 90.13333333333333
- type: recall
value: 93.10000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kor-eng)
type: mteb/tatoeba-bitext-mining
config: kor-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.7
- type: f1
value: 91.97333333333334
- type: precision
value: 91.14166666666667
- type: recall
value: 93.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (yid-eng)
type: mteb/tatoeba-bitext-mining
config: yid-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.21698113207547
- type: f1
value: 90.3796046720575
- type: precision
value: 89.56367924528303
- type: recall
value: 92.21698113207547
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fin-eng)
type: mteb/tatoeba-bitext-mining
config: fin-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.6
- type: f1
value: 96.91666666666667
- type: precision
value: 96.6
- type: recall
value: 97.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tha-eng)
type: mteb/tatoeba-bitext-mining
config: tha-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.44525547445255
- type: f1
value: 96.71532846715328
- type: precision
value: 96.35036496350365
- type: recall
value: 97.44525547445255
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (wuu-eng)
type: mteb/tatoeba-bitext-mining
config: wuu-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.1
- type: f1
value: 92.34000000000002
- type: precision
value: 91.49166666666667
- type: recall
value: 94.1
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: webis-touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.2910000000000004
- type: map_at_10
value: 10.373000000000001
- type: map_at_100
value: 15.612
- type: map_at_1000
value: 17.06
- type: map_at_3
value: 6.119
- type: map_at_5
value: 7.917000000000001
- type: mrr_at_1
value: 44.897999999999996
- type: mrr_at_10
value: 56.054
- type: mrr_at_100
value: 56.82000000000001
- type: mrr_at_1000
value: 56.82000000000001
- type: mrr_at_3
value: 52.381
- type: mrr_at_5
value: 53.81
- type: ndcg_at_1
value: 42.857
- type: ndcg_at_10
value: 27.249000000000002
- type: ndcg_at_100
value: 36.529
- type: ndcg_at_1000
value: 48.136
- type: ndcg_at_3
value: 33.938
- type: ndcg_at_5
value: 29.951
- type: precision_at_1
value: 44.897999999999996
- type: precision_at_10
value: 22.653000000000002
- type: precision_at_100
value: 7.000000000000001
- type: precision_at_1000
value: 1.48
- type: precision_at_3
value: 32.653
- type: precision_at_5
value: 27.755000000000003
- type: recall_at_1
value: 3.2910000000000004
- type: recall_at_10
value: 16.16
- type: recall_at_100
value: 43.908
- type: recall_at_1000
value: 79.823
- type: recall_at_3
value: 7.156
- type: recall_at_5
value: 10.204
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 71.05879999999999
- type: ap
value: 14.609748142799111
- type: f1
value: 54.878956295843096
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 64.61799660441426
- type: f1
value: 64.8698191961434
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 51.32860036611885
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 88.34714192048638
- type: cos_sim_ap
value: 80.26732975975634
- type: cos_sim_f1
value: 73.53415148134374
- type: cos_sim_precision
value: 69.34767360299276
- type: cos_sim_recall
value: 78.25857519788919
- type: dot_accuracy
value: 88.34714192048638
- type: dot_ap
value: 80.26733698491206
- type: dot_f1
value: 73.53415148134374
- type: dot_precision
value: 69.34767360299276
- type: dot_recall
value: 78.25857519788919
- type: euclidean_accuracy
value: 88.34714192048638
- type: euclidean_ap
value: 80.26734337771738
- type: euclidean_f1
value: 73.53415148134374
- type: euclidean_precision
value: 69.34767360299276
- type: euclidean_recall
value: 78.25857519788919
- type: manhattan_accuracy
value: 88.30541813196639
- type: manhattan_ap
value: 80.19415808104145
- type: manhattan_f1
value: 73.55143870713441
- type: manhattan_precision
value: 73.25307511122743
- type: manhattan_recall
value: 73.85224274406332
- type: max_accuracy
value: 88.34714192048638
- type: max_ap
value: 80.26734337771738
- type: max_f1
value: 73.55143870713441
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 89.81061047075717
- type: cos_sim_ap
value: 87.11747055081017
- type: cos_sim_f1
value: 80.04355498817256
- type: cos_sim_precision
value: 78.1165262000733
- type: cos_sim_recall
value: 82.06806282722513
- type: dot_accuracy
value: 89.81061047075717
- type: dot_ap
value: 87.11746902745236
- type: dot_f1
value: 80.04355498817256
- type: dot_precision
value: 78.1165262000733
- type: dot_recall
value: 82.06806282722513
- type: euclidean_accuracy
value: 89.81061047075717
- type: euclidean_ap
value: 87.11746919324248
- type: euclidean_f1
value: 80.04355498817256
- type: euclidean_precision
value: 78.1165262000733
- type: euclidean_recall
value: 82.06806282722513
- type: manhattan_accuracy
value: 89.79508673885202
- type: manhattan_ap
value: 87.11074390832218
- type: manhattan_f1
value: 80.13002540726349
- type: manhattan_precision
value: 77.83826945412311
- type: manhattan_recall
value: 82.56082537727133
- type: max_accuracy
value: 89.81061047075717
- type: max_ap
value: 87.11747055081017
- type: max_f1
value: 80.13002540726349
---
# yoeven/multilingual-e5-large-instruct-Q3_K_S-GGUF
This model was converted to GGUF format from [`intfloat/multilingual-e5-large-instruct`](https://huggingface.co/intfloat/multilingual-e5-large-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/intfloat/multilingual-e5-large-instruct) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo yoeven/multilingual-e5-large-instruct-Q3_K_S-GGUF --hf-file multilingual-e5-large-instruct-q3_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo yoeven/multilingual-e5-large-instruct-Q3_K_S-GGUF --hf-file multilingual-e5-large-instruct-q3_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo yoeven/multilingual-e5-large-instruct-Q3_K_S-GGUF --hf-file multilingual-e5-large-instruct-q3_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo yoeven/multilingual-e5-large-instruct-Q3_K_S-GGUF --hf-file multilingual-e5-large-instruct-q3_k_s.gguf -c 2048
```