amharic_text_summarization

This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1143
  • Rouge1: 14.4092
  • Rouge2: 7.9159
  • Rougel: 14.1994
  • Rougelsum: 14.1897

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 1.0 324 2.3183 13.4527 7.2905 13.3087 13.3061
No log 2.0 648 2.1940 13.6905 7.4703 13.5381 13.5183
No log 3.0 972 2.1724 13.8811 7.5513 13.7229 13.7019
11.0153 4.0 1296 2.1444 14.1353 7.7502 13.9441 13.9035
11.0153 5.0 1620 2.1257 14.2967 7.8073 14.0971 14.085
11.0153 6.0 1944 2.1143 14.4092 7.9159 14.1994 14.1897

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
35
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Providers NEW
Examples

Model tree for yohannes-07/amharic_text_summarization

Base model

google/mt5-small
Finetuned
(428)
this model