amharic_text_summarization
This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1143
- Rouge1: 14.4092
- Rouge2: 7.9159
- Rougel: 14.1994
- Rougelsum: 14.1897
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
No log | 1.0 | 324 | 2.3183 | 13.4527 | 7.2905 | 13.3087 | 13.3061 |
No log | 2.0 | 648 | 2.1940 | 13.6905 | 7.4703 | 13.5381 | 13.5183 |
No log | 3.0 | 972 | 2.1724 | 13.8811 | 7.5513 | 13.7229 | 13.7019 |
11.0153 | 4.0 | 1296 | 2.1444 | 14.1353 | 7.7502 | 13.9441 | 13.9035 |
11.0153 | 5.0 | 1620 | 2.1257 | 14.2967 | 7.8073 | 14.0971 | 14.085 |
11.0153 | 6.0 | 1944 | 2.1143 | 14.4092 | 7.9159 | 14.1994 | 14.1897 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 35
Model tree for yohannes-07/amharic_text_summarization
Base model
google/mt5-small