Info
SFT > DPO 순서가 아닌 DPO > SFT 순서로 학습시킨 모델입니다. SFT > DPO는 여기에서 확인해 주세요.
Model
- base model: meta-llama/Meta-Llama-3-8B-Instruct
Dataset
Load Model
Use the following Python code to load the model:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "youjunhyeok/llama3-8B-dpo-sft-v1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
Chat
def chat(message):
messages = [
{"role": "system", "content": "당신은 친절하고 도움이 되는 챗봇입니다."},
{"role": "user", "content": message},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=False,
temperature=0.5,
top_p=0.8,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
chat('한산도 대첩에 대해 아는 대로 얘기해봐')
Output
한산도 대첩은 조선시대에 일어난 전투로, 이순신 장군이 이끄는 조선군이 일본군을 물리친 전투입니다.
BenchMark (KOR)
# alias
A = youjunhyeok/llama3-8B-dpo-sft-v1
B = DavidAhn/Llama-3-8B-slerp-262k
C = meta-llama/Meta-Llama-3-8B
D = chihoonlee10/T3Q-ko-solar-dpo-v7.0 (24.05.24 ko 리더보드 1등)
Benchmark (macro_f1) | A | B | C | D |
---|---|---|---|---|
kobest_boolq (0-shot) | 84.7 | 33.5 | 38.2 | 34.1 |
kobest_boolq (5-shot) | 86.1 | 68.8 | 83.8 | 93.1 |
kobest_copa (0-shot) | 60.6 | 58.5 | 63.1 | 81.0 |
kobest_copa (5-shot) | 67.2 | 61.7 | 69.1 | 91.0 |
kobest_hellaswag (0-shot) | 40.0 | 43.2 | 42.1 | 55.1 |
kobest_hellaswag (5-shot) | 42.4 | 45.3 | 44.2 | 55.2 |
kobest_sentineg (0-shot) | 52.1 | 34.8 | 51.5 | 82.7 |
kobest_sentineg (5-shot) | 89.4 | 85.8 | 94.7 | 91.4 |
BenchMark (ENG)
openbookqa | hellaswag | boolq | arc_easy | arc_challenge | |
---|---|---|---|---|---|
youjunhyeok/llama3-8B-dpo-sft-v1 | 0.320 | 0.547 | 0.529 | 0.748 | 0.446 |
meta-llama/Meta-Llama-3-8B-Instruct | 0.338 | 0.576 | 0.831 | 0.815 | 0.529 |
- Downloads last month
- 2,585
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.