youssefkhalil320's picture
Upload folder using huggingface_hub
7a78abd verified
metadata
base_model: sentence-transformers/all-MiniLM-L6-v2
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1363306
  - loss:CoSENTLoss
widget:
  - source_sentence: labneh
    sentences:
      - iftar
      - bathing suit
      - coffee cup
  - source_sentence: Velvet flock Veil
    sentences:
      - mermaid purse
      - veil
      - mobile bag
  - source_sentence: Red lipstick
    sentences:
      - chemise dress
      - tote
      - rouge
  - source_sentence: Unisex Travel bag
    sentences:
      - spf
      - basic vega ring
      - travel backpack
  - source_sentence: jeremy hush book
    sentences:
      - chinese jumper
      - perfume
      - home automation device
model-index:
  - name: all-MiniLM-L6-v5-pair_score-syn-fr
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.45976967432661087
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.44063948938599923
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.41341637785801416
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.4372479132617008
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.4145493812051541
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.44063932299328573
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.45976967600824187
            name: Pearson Dot
          - type: spearman_dot
            value: 0.44063967285735406
            name: Spearman Dot
          - type: pearson_max
            value: 0.45976967600824187
            name: Pearson Max
          - type: spearman_max
            value: 0.44063967285735406
            name: Spearman Max

all-MiniLM-L6-v5-pair_score-syn-fr

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'jeremy hush book',
    'chinese jumper',
    'perfume',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.4598
spearman_cosine 0.4406
pearson_manhattan 0.4134
spearman_manhattan 0.4372
pearson_euclidean 0.4145
spearman_euclidean 0.4406
pearson_dot 0.4598
spearman_dot 0.4406
pearson_max 0.4598
spearman_max 0.4406

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss sts-dev_spearman_cosine
0 0 - - 0.4406
0.0094 100 17.0727 - -
0.0188 200 16.8813 - -
0.0282 300 16.5085 - -
0.0376 400 15.5716 - -
0.0469 500 14.5542 - -
0.0563 600 13.1478 - -
0.0657 700 11.3662 - -
0.0751 800 9.5649 - -
0.0845 900 8.536 - -
0.0939 1000 8.2589 - -
0.1033 1100 8.1649 - -
0.1127 1200 8.134 - -
0.1221 1300 8.1331 - -
0.1314 1400 8.0893 - -
0.1408 1500 8.0706 - -
0.1502 1600 8.0786 - -
0.1596 1700 8.058 - -
0.1690 1800 8.0768 - -
0.1784 1900 8.0834 - -
0.1878 2000 8.0714 - -
0.1972 2100 8.0671 - -
0.2066 2200 8.051 - -
0.2159 2300 8.0287 - -
0.2253 2400 8.0445 - -
0.2347 2500 8.0444 - -
0.2441 2600 8.0679 - -
0.2535 2700 8.0472 - -
0.2629 2800 8.0151 - -
0.2723 2900 8.0599 - -
0.2817 3000 8.0304 - -
0.2911 3100 8.0373 - -
0.3004 3200 8.0382 - -
0.3098 3300 8.0112 - -
0.3192 3400 8.0209 - -
0.3286 3500 8.0487 - -
0.3380 3600 8.0138 - -
0.3474 3700 8.046 - -
0.3568 3800 7.9876 - -
0.3662 3900 7.997 - -
0.3756 4000 8.0462 - -
0.3849 4100 7.9882 - -
0.3943 4200 7.9949 - -
0.4037 4300 7.9951 - -
0.4131 4400 8.0202 - -
0.4225 4500 8.0126 - -
0.4319 4600 8.0351 - -
0.4413 4700 8.0419 - -
0.4507 4800 7.9959 - -
0.4601 4900 8.0076 - -
0.4694 5000 8.0022 8.0125 -
0.4788 5100 7.9819 - -
0.4882 5200 7.9836 - -
0.4976 5300 7.9996 - -
0.5070 5400 8.0221 - -
0.5164 5500 8.0854 - -
0.5258 5600 8.0306 - -
0.5352 5700 7.9924 - -
0.5445 5800 7.9884 - -
0.5539 5900 8.0253 - -
0.5633 6000 7.9773 - -
0.5727 6100 7.9878 - -
0.5821 6200 8.0495 - -
0.5915 6300 7.9908 - -
0.6009 6400 7.9886 - -
0.6103 6500 8.0232 - -
0.6197 6600 7.9933 - -
0.6290 6700 8.0143 - -
0.6384 6800 7.9956 - -
0.6478 6900 7.9755 - -
0.6572 7000 7.9814 - -
0.6666 7100 7.9849 - -
0.6760 7200 8.0076 - -
0.6854 7300 8.0071 - -
0.6948 7400 8.003 - -
0.7042 7500 7.9966 - -
0.7135 7600 8.0052 - -
0.7229 7700 8.0226 - -
0.7323 7800 7.9809 - -
0.7417 7900 7.9802 - -
0.7511 8000 8.0008 - -
0.7605 8100 7.9876 - -
0.7699 8200 8.0295 - -
0.7793 8300 7.9992 - -
0.7887 8400 7.9942 - -
0.7980 8500 7.9872 - -
0.8074 8600 7.9757 - -
0.8168 8700 7.9835 - -
0.8262 8800 8.0555 - -
0.8356 8900 8.0055 - -
0.8450 9000 7.9817 - -
0.8544 9100 7.9952 - -
0.8638 9200 8.0083 - -
0.8732 9300 7.984 - -
0.8825 9400 7.9918 - -
0.8919 9500 7.9816 - -
0.9013 9600 8.0167 - -
0.9107 9700 7.9747 - -
0.9201 9800 7.9882 - -
0.9295 9900 8.0003 - -
0.9389 10000 8.0067 7.9823 -
0.9483 10100 8.017 - -
0.9577 10200 7.9763 - -
0.9670 10300 7.9553 - -
0.9764 10400 7.9525 - -
0.9858 10500 7.9987 - -
0.9952 10600 7.9715 - -
1.0046 10700 7.947 - -
1.0140 10800 8.0298 - -
1.0234 10900 7.9756 - -
1.0328 11000 7.979 - -
1.0422 11100 8.0417 - -
1.0515 11200 7.9936 - -
1.0609 11300 7.971 - -
1.0703 11400 7.99 - -
1.0797 11500 7.9562 - -
1.0891 11600 7.9541 - -
1.0985 11700 7.9788 - -
1.1079 11800 7.9883 - -
1.1173 11900 7.9643 - -
1.1267 12000 7.9806 - -
1.1360 12100 7.9543 - -
1.1454 12200 7.9684 - -
1.1548 12300 7.9492 - -
1.1642 12400 7.984 - -
1.1736 12500 7.9817 - -
1.1830 12600 7.9621 - -
1.1924 12700 7.9782 - -
1.2018 12800 7.9748 - -
1.2112 12900 7.9606 - -
1.2205 13000 7.9654 - -
1.2299 13100 7.9708 - -
1.2393 13200 7.9832 - -
1.2487 13300 7.9482 - -
1.2581 13400 7.9717 - -
1.2675 13500 7.9667 - -
1.2769 13600 7.9653 - -
1.2863 13700 7.969 - -
1.2957 13800 7.9416 - -
1.3050 13900 7.994 - -
1.3144 14000 7.9821 - -
1.3238 14100 7.9656 - -
1.3332 14200 7.9763 - -
1.3426 14300 7.9708 - -
1.3520 14400 7.9713 - -
1.3614 14500 8.0128 - -
1.3708 14600 7.9914 - -
1.3802 14700 7.9839 - -
1.3895 14800 7.9485 - -
1.3989 14900 7.9564 - -
1.4083 15000 7.9646 7.9795 -
1.4177 15100 7.9443 - -
1.4271 15200 8.002 - -
1.4365 15300 7.9493 - -
1.4459 15400 7.9561 - -
1.4553 15500 7.9571 - -
1.4647 15600 7.9634 - -
1.4740 15700 7.9348 - -
1.4834 15800 7.9476 - -
1.4928 15900 7.9373 - -
1.5022 16000 7.9985 - -
1.5116 16100 7.9518 - -
1.5210 16200 7.9751 - -
1.5304 16300 7.9677 - -
1.5398 16400 7.9538 - -
1.5492 16500 7.9894 - -
1.5585 16600 7.9832 - -
1.5679 16700 7.9582 - -
1.5773 16800 7.975 - -
1.5867 16900 7.9379 - -
1.5961 17000 7.9434 - -
1.6055 17100 7.9805 - -
1.6149 17200 7.946 - -
1.6243 17300 7.9613 - -
1.6336 17400 7.9687 - -
1.6430 17500 7.9612 - -
1.6524 17600 7.9614 - -
1.6618 17700 7.95 - -
1.6712 17800 7.9874 - -
1.6806 17900 7.9665 - -
1.6900 18000 7.9562 - -
1.6994 18100 7.9777 - -
1.7088 18200 7.9771 - -
1.7181 18300 7.9405 - -
1.7275 18400 7.9516 - -
1.7369 18500 8.0012 - -
1.7463 18600 7.9464 - -
1.7557 18700 7.9623 - -
1.7651 18800 7.9478 - -
1.7745 18900 7.9528 - -
1.7839 19000 7.9617 - -
1.7933 19100 7.966 - -
1.8026 19200 7.9718 - -
1.8120 19300 7.9679 - -
1.8214 19400 7.9448 - -
1.8308 19500 7.9299 - -
1.8402 19600 7.967 - -
1.8496 19700 7.9327 - -
1.8590 19800 7.9602 - -
1.8684 19900 7.9515 - -
1.8778 20000 7.9447 7.9457 -
1.8871 20100 7.9487 - -
1.8965 20200 7.9438 - -
1.9059 20300 7.9821 - -
1.9153 20400 7.9485 - -
1.9247 20500 7.9251 - -
1.9341 20600 7.982 - -
1.9435 20700 7.9508 - -
1.9529 20800 7.9511 - -
1.9623 20900 7.9747 - -
1.9716 21000 7.9365 - -
1.9810 21100 7.9845 - -
1.9904 21200 8.0186 - -
1.9998 21300 8.0228 - -
2.0092 21400 7.949 - -
2.0186 21500 7.9371 - -
2.0280 21600 7.9355 - -
2.0374 21700 7.9528 - -
2.0468 21800 7.9246 - -
2.0561 21900 7.9721 - -
2.0655 22000 7.9438 - -
2.0749 22100 7.9349 - -
2.0843 22200 7.9315 - -
2.0937 22300 7.9398 - -
2.1031 22400 7.9232 - -
2.1125 22500 7.9189 - -
2.1219 22600 7.9296 - -
2.1313 22700 7.9658 - -
2.1406 22800 7.922 - -
2.1500 22900 7.9247 - -
2.1594 23000 7.9748 - -
2.1688 23100 7.9632 - -
2.1782 23200 7.9416 - -
2.1876 23300 8.0063 - -
2.1970 23400 7.9347 - -
2.2064 23500 7.9242 - -
2.2158 23600 7.9537 - -
2.2251 23700 7.9281 - -
2.2345 23800 7.9417 - -
2.2439 23900 7.9699 - -
2.2533 24000 7.9919 - -
2.2627 24100 7.9322 - -
2.2721 24200 7.9702 - -
2.2815 24300 7.9421 - -
2.2909 24400 7.9453 - -
2.3003 24500 7.9485 - -
2.3096 24600 7.9491 - -
2.3190 24700 7.9575 - -
2.3284 24800 7.9481 - -
2.3378 24900 7.9261 - -
2.3472 25000 7.9347 7.9455 -
2.3566 25100 7.9434 - -
2.3660 25200 7.9627 - -
2.3754 25300 7.9303 - -
2.3848 25400 7.9455 - -
2.3941 25500 7.9228 - -
2.4035 25600 7.9492 - -
2.4129 25700 7.9384 - -
2.4223 25800 7.9408 - -
2.4317 25900 7.9497 - -
2.4411 26000 7.9159 - -
2.4505 26100 7.941 - -
2.4599 26200 7.937 - -
2.4693 26300 7.9484 - -
2.4786 26400 7.9238 - -
2.4880 26500 7.9329 - -
2.4974 26600 7.9506 - -
2.5068 26700 7.9568 - -
2.5162 26800 7.9548 - -
2.5256 26900 7.9097 - -
2.5350 27000 7.9085 - -
2.5444 27100 7.9368 - -
2.5538 27200 7.9546 - -
2.5631 27300 7.9255 - -
2.5725 27400 7.9536 - -
2.5819 27500 7.919 - -
2.5913 27600 7.917 - -
2.6007 27700 7.937 - -
2.6101 27800 7.9159 - -
2.6195 27900 7.9306 - -
2.6289 28000 7.9592 - -
2.6382 28100 7.9375 - -
2.6476 28200 7.9225 - -
2.6570 28300 7.958 - -
2.6664 28400 7.9059 - -
2.6758 28500 7.936 - -
2.6852 28600 7.9138 - -
2.6946 28700 7.9565 - -
2.7040 28800 7.926 - -
2.7134 28900 7.9365 - -
2.7227 29000 7.9122 - -
2.7321 29100 7.9196 - -
2.7415 29200 7.9533 - -
2.7509 29300 7.925 - -
2.7603 29400 7.9594 - -
2.7697 29500 7.9115 - -
2.7791 29600 7.956 - -
2.7885 29700 7.9394 - -
2.7979 29800 7.9165 - -
2.8072 29900 7.9471 - -
2.8166 30000 7.9724 7.9237 -
2.8260 30100 7.9205 - -
2.8354 30200 7.9513 - -
2.8448 30300 7.9101 - -
2.8542 30400 7.9237 - -
2.8636 30500 7.9428 - -
2.8730 30600 7.9408 - -
2.8824 30700 7.956 - -
2.8917 30800 7.9196 - -
2.9011 30900 7.9262 - -
2.9105 31000 7.9516 - -
2.9199 31100 7.9086 - -
2.9293 31200 7.9339 - -
2.9387 31300 7.9334 - -
2.9481 31400 7.9308 - -
2.9575 31500 7.9569 - -
2.9669 31600 7.9256 - -
2.9762 31700 7.9108 - -
2.9856 31800 7.9409 - -
2.9950 31900 7.9159 - -
3.0044 32000 7.8975 - -
3.0138 32100 7.9583 - -
3.0232 32200 7.9031 - -
3.0326 32300 7.9448 - -
3.0420 32400 7.9438 - -
3.0514 32500 7.9284 - -
3.0607 32600 7.9124 - -
3.0701 32700 7.9153 - -
3.0795 32800 7.9188 - -
3.0889 32900 7.9358 - -
3.0983 33000 7.9436 - -
3.1077 33100 7.9492 - -
3.1171 33200 7.9032 - -
3.1265 33300 7.922 - -
3.1359 33400 7.9677 - -
3.1452 33500 7.9127 - -
3.1546 33600 7.9381 - -
3.1640 33700 7.9198 - -
3.1734 33800 7.9183 - -
3.1828 33900 7.9182 - -
3.1922 34000 7.9261 - -
3.2016 34100 7.9091 - -
3.2110 34200 7.941 - -
3.2204 34300 7.9239 - -
3.2297 34400 7.9208 - -
3.2391 34500 7.9499 - -
3.2485 34600 7.9251 - -
3.2579 34700 7.9219 - -
3.2673 34800 7.9344 - -
3.2767 34900 7.9496 - -
3.2861 35000 7.9184 7.9239 -
3.2955 35100 7.9053 - -
3.3049 35200 7.931 - -
3.3142 35300 7.9347 - -
3.3236 35400 7.9575 - -
3.3330 35500 7.9259 - -
3.3424 35600 7.9262 - -
3.3518 35700 7.9206 - -
3.3612 35800 7.9445 - -
3.3706 35900 7.9043 - -
3.3800 36000 7.9164 - -
3.3894 36100 7.9199 - -
3.3987 36200 7.9132 - -
3.4081 36300 7.9163 - -
3.4175 36400 7.9203 - -
3.4269 36500 7.9491 - -
3.4363 36600 7.9093 - -
3.4457 36700 7.9271 - -
3.4551 36800 7.9202 - -
3.4645 36900 7.9193 - -
3.4739 37000 7.9041 - -
3.4832 37100 7.9284 - -
3.4926 37200 7.9633 - -
3.5020 37300 7.9078 - -
3.5114 37400 7.9144 - -
3.5208 37500 7.9011 - -
3.5302 37600 7.9101 - -
3.5396 37700 7.9331 - -
3.5490 37800 7.9349 - -
3.5584 37900 7.9272 - -
3.5677 38000 7.9033 - -
3.5771 38100 7.895 - -
3.5865 38200 7.9082 - -
3.5959 38300 7.9544 - -
3.6053 38400 7.9063 - -
3.6147 38500 7.9249 - -
3.6241 38600 7.9124 - -
3.6335 38700 7.9174 - -
3.6429 38800 7.9275 - -
3.6522 38900 7.9045 - -
3.6616 39000 7.9327 - -
3.6710 39100 7.9383 - -
3.6804 39200 7.9134 - -
3.6898 39300 7.925 - -
3.6992 39400 7.9214 - -
3.7086 39500 7.9207 - -
3.7180 39600 7.9192 - -
3.7273 39700 7.9194 - -
3.7367 39800 7.9242 - -
3.7461 39900 7.905 - -
3.7555 40000 7.9278 7.9185 -
3.7649 40100 7.9147 - -
3.7743 40200 7.9194 - -
3.7837 40300 7.9004 - -
3.7931 40400 7.9549 - -
3.8025 40500 7.9326 - -
3.8118 40600 7.9124 - -
3.8212 40700 7.9355 - -
3.8306 40800 7.926 - -
3.8400 40900 7.9491 - -
3.8494 41000 7.9163 - -
3.8588 41100 7.9554 - -
3.8682 41200 7.9162 - -
3.8776 41300 7.8916 - -
3.8870 41400 7.8969 - -
3.8963 41500 7.9131 - -
3.9057 41600 7.9272 - -
3.9151 41700 7.9482 - -
3.9245 41800 7.9168 - -
3.9339 41900 7.9062 - -
3.9433 42000 7.9238 - -
3.9527 42100 7.9407 - -
3.9621 42200 7.9482 - -
3.9715 42300 7.9221 - -
3.9808 42400 7.9221 - -
3.9902 42500 7.9313 - -
3.9996 42600 7.9441 - -

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.1+cu118
  • Accelerate: 1.0.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}