all-mpnet-base-v2-pair_score
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'jeremy hush book',
'chinese jumper',
'perfume',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0094 | 100 | 16.0755 | - |
0.0188 | 200 | 13.0643 | - |
0.0282 | 300 | 9.3474 | - |
0.0376 | 400 | 8.2606 | - |
0.0469 | 500 | 8.084 | - |
0.0563 | 600 | 8.0581 | - |
0.0657 | 700 | 8.0175 | - |
0.0751 | 800 | 8.0285 | - |
0.0845 | 900 | 8.0024 | - |
0.0939 | 1000 | 8.0161 | - |
0.1033 | 1100 | 7.9941 | - |
0.1127 | 1200 | 8.0233 | - |
0.1221 | 1300 | 8.0141 | - |
0.1314 | 1400 | 7.9644 | - |
0.1408 | 1500 | 8.0311 | - |
0.1502 | 1600 | 8.0306 | - |
0.1596 | 1700 | 7.989 | - |
0.1690 | 1800 | 8.0034 | - |
0.1784 | 1900 | 8.0107 | - |
0.1878 | 2000 | 7.9737 | - |
0.1972 | 2100 | 7.9827 | - |
0.2066 | 2200 | 8.0389 | - |
0.2159 | 2300 | 7.973 | - |
0.2253 | 2400 | 7.9669 | - |
0.2347 | 2500 | 8.0296 | - |
0.2441 | 2600 | 7.9984 | - |
0.2535 | 2700 | 7.9772 | - |
0.2629 | 2800 | 7.9838 | - |
0.2723 | 2900 | 7.9816 | - |
0.2817 | 3000 | 8.0021 | - |
0.2911 | 3100 | 7.9715 | - |
0.3004 | 3200 | 7.9809 | - |
0.3098 | 3300 | 7.9849 | - |
0.3192 | 3400 | 7.9463 | - |
0.3286 | 3500 | 8.0067 | - |
0.3380 | 3600 | 7.9431 | - |
0.3474 | 3700 | 7.9877 | - |
0.3568 | 3800 | 7.9494 | - |
0.3662 | 3900 | 7.9466 | - |
0.3756 | 4000 | 7.9708 | - |
0.3849 | 4100 | 7.9525 | - |
0.3943 | 4200 | 7.9322 | - |
0.4037 | 4300 | 7.9415 | - |
0.4131 | 4400 | 7.9932 | - |
0.4225 | 4500 | 7.9481 | - |
0.4319 | 4600 | 7.976 | - |
0.4413 | 4700 | 7.971 | - |
0.4507 | 4800 | 7.9647 | - |
0.4601 | 4900 | 7.9217 | - |
0.4694 | 5000 | 7.9374 | 7.9518 |
0.4788 | 5100 | 7.9026 | - |
0.4882 | 5200 | 7.9304 | - |
0.4976 | 5300 | 7.9148 | - |
0.5070 | 5400 | 7.9538 | - |
0.5164 | 5500 | 8.0002 | - |
0.5258 | 5600 | 7.9571 | - |
0.5352 | 5700 | 7.932 | - |
0.5445 | 5800 | 7.9047 | - |
0.5539 | 5900 | 7.9353 | - |
0.5633 | 6000 | 7.9203 | - |
0.5727 | 6100 | 7.8967 | - |
0.5821 | 6200 | 7.9414 | - |
0.5915 | 6300 | 7.9631 | - |
0.6009 | 6400 | 7.9606 | - |
0.6103 | 6500 | 7.9377 | - |
0.6197 | 6600 | 7.9108 | - |
0.6290 | 6700 | 7.9225 | - |
0.6384 | 6800 | 7.9154 | - |
0.6478 | 6900 | 7.9191 | - |
0.6572 | 7000 | 7.8903 | - |
0.6666 | 7100 | 7.9213 | - |
0.6760 | 7200 | 7.9202 | - |
0.6854 | 7300 | 7.8998 | - |
0.6948 | 7400 | 7.9153 | - |
0.7042 | 7500 | 7.9037 | - |
0.7135 | 7600 | 7.9146 | - |
0.7229 | 7700 | 7.8972 | - |
0.7323 | 7800 | 7.9374 | - |
0.7417 | 7900 | 7.8647 | - |
0.7511 | 8000 | 7.8915 | - |
0.7605 | 8100 | 7.8846 | - |
0.7699 | 8200 | 7.8988 | - |
0.7793 | 8300 | 7.8702 | - |
0.7887 | 8400 | 7.923 | - |
0.7980 | 8500 | 7.891 | - |
0.8074 | 8600 | 7.8832 | - |
0.8168 | 8700 | 7.8726 | - |
0.8262 | 8800 | 7.8813 | - |
0.8356 | 8900 | 7.8986 | - |
0.8450 | 9000 | 7.8743 | - |
0.8544 | 9100 | 7.8791 | - |
0.8638 | 9200 | 7.8783 | - |
0.8732 | 9300 | 7.8528 | - |
0.8825 | 9400 | 7.8864 | - |
0.8919 | 9500 | 7.8989 | - |
0.9013 | 9600 | 7.8617 | - |
0.9107 | 9700 | 7.8371 | - |
0.9201 | 9800 | 7.8566 | - |
0.9295 | 9900 | 7.8776 | - |
0.9389 | 10000 | 7.8558 | 7.8492 |
0.9483 | 10100 | 7.848 | - |
0.9577 | 10200 | 7.8227 | - |
0.9670 | 10300 | 7.8311 | - |
0.9764 | 10400 | 7.8437 | - |
0.9858 | 10500 | 7.8454 | - |
0.9952 | 10600 | 7.8362 | - |
1.0046 | 10700 | 7.8681 | - |
1.0140 | 10800 | 7.8745 | - |
1.0234 | 10900 | 7.8339 | - |
1.0328 | 11000 | 7.8458 | - |
1.0422 | 11100 | 7.8493 | - |
1.0515 | 11200 | 7.8317 | - |
1.0609 | 11300 | 7.841 | - |
1.0703 | 11400 | 7.8292 | - |
1.0797 | 11500 | 7.8121 | - |
1.0891 | 11600 | 7.8165 | - |
1.0985 | 11700 | 7.8259 | - |
1.1079 | 11800 | 7.8303 | - |
1.1173 | 11900 | 7.809 | - |
1.1267 | 12000 | 7.818 | - |
1.1360 | 12100 | 7.8071 | - |
1.1454 | 12200 | 7.801 | - |
1.1548 | 12300 | 7.8123 | - |
1.1642 | 12400 | 7.8203 | - |
1.1736 | 12500 | 7.8609 | - |
1.1830 | 12600 | 7.7782 | - |
1.1924 | 12700 | 7.8092 | - |
1.2018 | 12800 | 7.815 | - |
1.2112 | 12900 | 7.8196 | - |
1.2205 | 13000 | 7.8206 | - |
1.2299 | 13100 | 7.8022 | - |
1.2393 | 13200 | 7.8043 | - |
1.2487 | 13300 | 7.7823 | - |
1.2581 | 13400 | 7.8061 | - |
1.2675 | 13500 | 7.8016 | - |
1.2769 | 13600 | 7.8076 | - |
1.2863 | 13700 | 7.7996 | - |
1.2957 | 13800 | 7.8035 | - |
1.3050 | 13900 | 7.8092 | - |
1.3144 | 14000 | 7.7902 | - |
1.3238 | 14100 | 7.8114 | - |
1.3332 | 14200 | 7.8112 | - |
1.3426 | 14300 | 7.8036 | - |
1.3520 | 14400 | 7.8178 | - |
1.3614 | 14500 | 7.8391 | - |
1.3708 | 14600 | 7.8151 | - |
1.3802 | 14700 | 7.7957 | - |
1.3895 | 14800 | 7.7833 | - |
1.3989 | 14900 | 7.8049 | - |
1.4083 | 15000 | 7.8163 | 7.8078 |
1.4177 | 15100 | 7.7864 | - |
1.4271 | 15200 | 7.8241 | - |
1.4365 | 15300 | 7.7694 | - |
1.4459 | 15400 | 7.7784 | - |
1.4553 | 15500 | 7.7628 | - |
1.4647 | 15600 | 7.8044 | - |
1.4740 | 15700 | 7.7871 | - |
1.4834 | 15800 | 7.809 | - |
1.4928 | 15900 | 7.7955 | - |
1.5022 | 16000 | 7.8056 | - |
1.5116 | 16100 | 7.774 | - |
1.5210 | 16200 | 7.7874 | - |
1.5304 | 16300 | 7.7918 | - |
1.5398 | 16400 | 7.7787 | - |
1.5492 | 16500 | 7.7881 | - |
1.5585 | 16600 | 7.7723 | - |
1.5679 | 16700 | 7.7809 | - |
1.5773 | 16800 | 7.8096 | - |
1.5867 | 16900 | 7.7559 | - |
1.5961 | 17000 | 7.8063 | - |
1.6055 | 17100 | 7.8137 | - |
1.6149 | 17200 | 7.761 | - |
1.6243 | 17300 | 7.7672 | - |
1.6336 | 17400 | 7.7939 | - |
1.6430 | 17500 | 7.8052 | - |
1.6524 | 17600 | 7.7519 | - |
1.6618 | 17700 | 7.7643 | - |
1.6712 | 17800 | 7.7823 | - |
1.6806 | 17900 | 7.7507 | - |
1.6900 | 18000 | 7.777 | - |
1.6994 | 18100 | 7.786 | - |
1.7088 | 18200 | 7.8097 | - |
1.7181 | 18300 | 7.7749 | - |
1.7275 | 18400 | 7.7626 | - |
1.7369 | 18500 | 7.7783 | - |
1.7463 | 18600 | 7.7552 | - |
1.7557 | 18700 | 7.7837 | - |
1.7651 | 18800 | 7.7583 | - |
1.7745 | 18900 | 7.7617 | - |
1.7839 | 19000 | 7.7649 | - |
1.7933 | 19100 | 7.7767 | - |
1.8026 | 19200 | 7.7565 | - |
1.8120 | 19300 | 7.7702 | - |
1.8214 | 19400 | 7.7552 | - |
1.8308 | 19500 | 7.7511 | - |
1.8402 | 19600 | 7.7818 | - |
1.8496 | 19700 | 7.7704 | - |
1.8590 | 19800 | 7.7824 | - |
1.8684 | 19900 | 7.751 | - |
1.8778 | 20000 | 7.7868 | 7.7942 |
1.8871 | 20100 | 7.7981 | - |
1.8965 | 20200 | 7.7673 | - |
1.9059 | 20300 | 7.7695 | - |
1.9153 | 20400 | 7.7587 | - |
1.9247 | 20500 | 7.7444 | - |
1.9341 | 20600 | 7.7736 | - |
1.9435 | 20700 | 7.7655 | - |
1.9529 | 20800 | 7.7686 | - |
1.9623 | 20900 | 7.7731 | - |
1.9716 | 21000 | 7.7527 | - |
1.9810 | 21100 | 7.7962 | - |
1.9904 | 21200 | 7.7676 | - |
1.9998 | 21300 | 7.7641 | - |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for youssefkhalil320/all-mpnet-base-v2-pairscore
Base model
sentence-transformers/all-mpnet-base-v2