|
--- |
|
base_model: klue/roberta-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- klue |
|
model-index: |
|
- name: sts_roberta_large_lr1e-05_wd1e-03_ep10_ckpt |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# sts_roberta_large_lr1e-05_wd1e-03_ep10_ckpt |
|
|
|
This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the klue dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3764 |
|
- Mse: 0.3764 |
|
- Mae: 0.4512 |
|
- R2: 0.8277 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| |
|
| 2.3411 | 1.0 | 183 | 1.0407 | 1.0407 | 0.7779 | 0.5234 | |
|
| 0.1725 | 2.0 | 366 | 0.3938 | 0.3938 | 0.4710 | 0.8197 | |
|
| 0.1203 | 3.0 | 549 | 0.3972 | 0.3972 | 0.4594 | 0.8181 | |
|
| 0.093 | 4.0 | 732 | 0.4030 | 0.4030 | 0.4675 | 0.8155 | |
|
| 0.0727 | 5.0 | 915 | 0.4102 | 0.4102 | 0.4690 | 0.8122 | |
|
| 0.0591 | 6.0 | 1098 | 0.3700 | 0.3700 | 0.4470 | 0.8306 | |
|
| 0.0482 | 7.0 | 1281 | 0.3578 | 0.3578 | 0.4403 | 0.8362 | |
|
| 0.0417 | 8.0 | 1464 | 0.4042 | 0.4042 | 0.4696 | 0.8149 | |
|
| 0.037 | 9.0 | 1647 | 0.4151 | 0.4151 | 0.4753 | 0.8099 | |
|
| 0.0337 | 10.0 | 1830 | 0.3764 | 0.3764 | 0.4512 | 0.8277 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.13.0 |
|
- Tokenizers 0.13.3 |
|
|