Model Details
Model Description
An adapter for the google/vit-base-patch16-224 ViT trained on CIFAR10 classification task
Loading guide
from transformers import AutoModelForImageClassification
labels2title = ['plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
model = AutoModelForImageClassification.from_pretrained(
'google/vit-base-patch16-224-in21k',
num_labels=len(labels2title),
id2label={i: c for i, c in enumerate(labels2title)},
label2id={c: i for i, c in enumerate(labels2title)}
)
model.load_adapter("yturkunov/cifar10_vit16_lora")
Learning curves
Recommendations to input
The model expects an image that has went through the following preprocessing stages:
- Scaling range:
- Normalization parameters:
- Dimensions: 224x224
- Number of channels: 3
Inference on 3x4 random sample
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.