|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-de |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-de |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6628 |
|
- Rouge1: 16.6076 |
|
- Rouge2: 9.9027 |
|
- Rougel: 16.1974 |
|
- Rougelsum: 16.2188 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 8.2562 | 1.0 | 651 | 3.1075 | 14.737 | 6.9361 | 14.3272 | 14.3439 | |
|
| 4.0951 | 2.0 | 1302 | 2.8909 | 13.9821 | 7.1908 | 13.5966 | 13.6613 | |
|
| 3.7285 | 3.0 | 1953 | 2.7839 | 14.1682 | 7.1028 | 13.8005 | 13.8592 | |
|
| 3.5478 | 4.0 | 2604 | 2.7192 | 15.8804 | 9.6757 | 15.6891 | 15.7287 | |
|
| 3.4295 | 5.0 | 3255 | 2.6939 | 17.5083 | 10.3927 | 17.0418 | 17.0633 | |
|
| 3.3476 | 6.0 | 3906 | 2.6724 | 16.9379 | 10.2269 | 16.6049 | 16.5903 | |
|
| 3.2964 | 7.0 | 4557 | 2.6725 | 16.8053 | 10.1869 | 16.3812 | 16.441 | |
|
| 3.2723 | 8.0 | 5208 | 2.6628 | 16.6076 | 9.9027 | 16.1974 | 16.2188 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|