language: en
tags:
- singapore
- sg
- singlish
- malaysia
- ms
- manglish
- bert-base-uncased
license: mit
datasets:
- reddit singapore, malaysia
- hardwarezone
widget:
- text: kopi c siew [MASK]
- text: die [MASK] must try
Model name
SingBert - Bert for Singlish (SG) and Manglish (MY).
Model description
BERT base uncased, with pre-training finetuned on singlish and manglish data.
Intended uses & limitations
How to use
>>> from transformers import pipeline
>>> nlp = pipeline('fill-mask', model='zanelim/singbert')
>>> nlp("kopi c siew [MASK]")
[{'sequence': '[CLS] kopi c siew dai [SEP]',
'score': 0.5092713236808777,
'token': 18765,
'token_str': 'dai'},
{'sequence': '[CLS] kopi c siew mai [SEP]',
'score': 0.3515934646129608,
'token': 14736,
'token_str': 'mai'},
{'sequence': '[CLS] kopi c siew bao [SEP]',
'score': 0.05576375499367714,
'token': 25945,
'token_str': 'bao'},
{'sequence': '[CLS] kopi c siew. [SEP]',
'score': 0.006019321270287037,
'token': 1012,
'token_str': '.'},
{'sequence': '[CLS] kopi c siew sai [SEP]',
'score': 0.0038361591286957264,
'token': 18952,
'token_str': 'sai'}]
>>> nlp("one teh c siew dai, and one kopi [MASK].")
[{'sequence': '[CLS] one teh c siew dai, and one kopi c [SEP]',
'score': 0.6176503300666809,
'token': 1039,
'token_str': 'c'},
{'sequence': '[CLS] one teh c siew dai, and one kopi o [SEP]',
'score': 0.21094971895217896,
'token': 1051,
'token_str': 'o'},
{'sequence': '[CLS] one teh c siew dai, and one kopi. [SEP]',
'score': 0.13027705252170563,
'token': 1012,
'token_str': '.'},
{'sequence': '[CLS] one teh c siew dai, and one kopi! [SEP]',
'score': 0.004680239595472813,
'token': 999,
'token_str': '!'},
{'sequence': '[CLS] one teh c siew dai, and one kopi w [SEP]',
'score': 0.002034128177911043,
'token': 1059,
'token_str': 'w'}]
>>> nlp("dont play [MASK] leh")
[{'sequence': '[CLS] dont play play leh [SEP]',
'score': 0.9281464219093323,
'token': 2377,
'token_str': 'play'},
{'sequence': '[CLS] dont play politics leh [SEP]',
'score': 0.010990909300744534,
'token': 4331,
'token_str': 'politics'},
{'sequence': '[CLS] dont play punk leh [SEP]',
'score': 0.005583590362221003,
'token': 7196,
'token_str': 'punk'},
{'sequence': '[CLS] dont play dirty leh [SEP]',
'score': 0.0025784350000321865,
'token': 6530,
'token_str': 'dirty'},
{'sequence': '[CLS] dont play cheat leh [SEP]',
'score': 0.0025066907983273268,
'token': 21910,
'token_str': 'cheat'}]
>>> nlp("catch no [MASK]")
[{'sequence': '[CLS] catch no ball [SEP]',
'score': 0.7922210693359375,
'token': 3608,
'token_str': 'ball'},
{'sequence': '[CLS] catch no balls [SEP]',
'score': 0.20503675937652588,
'token': 7395,
'token_str': 'balls'},
{'sequence': '[CLS] catch no tail [SEP]',
'score': 0.0006608376861549914,
'token': 5725,
'token_str': 'tail'},
{'sequence': '[CLS] catch no talent [SEP]',
'score': 0.0002158183924620971,
'token': 5848,
'token_str': 'talent'},
{'sequence': '[CLS] catch no prisoners [SEP]',
'score': 5.3481446229852736e-05,
'token': 5895,
'token_str': 'prisoners'}]
>>> nlp("confirm plus [MASK]")
[{'sequence': '[CLS] confirm plus chop [SEP]',
'score': 0.992355227470398,
'token': 24494,
'token_str': 'chop'},
{'sequence': '[CLS] confirm plus one [SEP]',
'score': 0.0037301010452210903,
'token': 2028,
'token_str': 'one'},
{'sequence': '[CLS] confirm plus minus [SEP]',
'score': 0.0014284878270700574,
'token': 15718,
'token_str': 'minus'},
{'sequence': '[CLS] confirm plus 1 [SEP]',
'score': 0.0011354683665558696,
'token': 1015,
'token_str': '1'},
{'sequence': '[CLS] confirm plus chopped [SEP]',
'score': 0.0003804611915256828,
'token': 24881,
'token_str': 'chopped'}]
>>> nlp("die [MASK] must try")
[{'sequence': '[CLS] die die must try [SEP]',
'score': 0.9552758932113647,
'token': 3280,
'token_str': 'die'},
{'sequence': '[CLS] die also must try [SEP]',
'score': 0.03644804656505585,
'token': 2036,
'token_str': 'also'},
{'sequence': '[CLS] die liao must try [SEP]',
'score': 0.003282855963334441,
'token': 727,
'token_str': 'liao'},
{'sequence': '[CLS] die already must try [SEP]',
'score': 0.0004937972989864647,
'token': 2525,
'token_str': 'already'},
{'sequence': '[CLS] die hard must try [SEP]',
'score': 0.0003659659414552152,
'token': 2524,
'token_str': 'hard'}]
Here is how to use this model to get the features of a given text in PyTorch:
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('zanelim/singbert')
model = BertModel.from_pretrained("zanelim/singbert")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
and in TensorFlow:
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained("zanelim/singbert")
model = TFBertModel.from_pretrained("zanelim/singbert")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
Limitations and bias
This model was finetuned on colloquial Singlish and Manglish corpus, hence it is best applied on downstream tasks involving the main constituent languages- english, mandarin, malay. Also, as the training data is mainly from forums, beware of existing inherent bias.
Training data
Colloquial singlish and manglish (both are a mixture of English, Mandarin, Tamil, Malay, and other local dialects like Hokkien, Cantonese or Teochew)
corpus. The corpus is collected from subreddits- r/singapore
and r/malaysia
, and forums such as hardwarezone
.
Training procedure
Initialized with bert base uncased vocab and checkpoints (pre-trained weights). Top 1000 custom vocab tokens (non-overlapped with original bert vocab) were further extracted from training data and filled into unused tokens in original bert vocab.
Pre-training was further finetuned on training data with the following hyperparameters
- train_batch_size: 512
- max_seq_length: 128
- num_train_steps: 300000
- num_warmup_steps: 5000
- learning_rate: 2e-5
- hardware: TPU v3-8