whisper-small-id / README.md
zeinhasan's picture
End of training
b8242c9 verified
metadata
library_name: transformers
language:
  - hi
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Tiny id - Zein
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: id
          split: None
          args: 'config: id, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 49.15607901326162

Whisper Tiny id - Zein

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9557
  • Wer: 49.1561

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3251 3.1646 1000 0.7617 48.4559
0.1132 6.3291 2000 0.7951 47.6630
0.0414 9.4937 3000 0.8504 48.5208
0.0146 12.6582 4000 0.9079 49.3647
0.0083 15.8228 5000 0.9421 48.9057
0.0064 18.9873 6000 0.9557 49.1561

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1