strickvl's picture
Add new SentenceTransformer model.
626629d verified
|
raw
history blame
72.7 kB
metadata
base_model: sentence-transformers/all-MiniLM-L6-v2
datasets: []
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1490
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      What are some examples of long-lived credentials used in ZenML for
      authentication?
    sentences:
      - >2-
         gs://zenml-core_cloudbuild                      ┃┃                       │ gs://zenml-datasets                             ┃

                               
        gs://zenml-internal-artifact-store              


                               
        gs://zenml-kubeflow-artifact-store              


                               
        gs://zenml-project-time-series-bucket           


        ┠───────────────────────┼─────────────────────────────────────────────────┨


         🌀 kubernetes-cluster 
        zenml-test-cluster                              


        ┠───────────────────────┼─────────────────────────────────────────────────┨


          🐳 docker-registry   
        gcr.io/zenml-core                               


        ┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛


        Long-lived credentials (API keys, account keys)


        This is the magic formula of authentication methods. When paired with
        another ability, such as automatically generating short-lived API
        tokens, or impersonating accounts or assuming roles, this is the ideal
        authentication mechanism to use, particularly when using ZenML in
        production and when sharing results with other members of your ZenML
        team.


        As a general best practice, but implemented particularly well for cloud
        platforms, account passwords are never directly used as a credential
        when authenticating to the cloud platform APIs. There is always a
        process in place that exchanges the account/password credential for
        another type of long-lived credential:


        AWS uses the aws configure CLI command


        GCP offers the gcloud auth application-default login CLI commands


        Azure provides the az login CLI command


        None of your original login information is stored on your local machine
        or used to access workloads. Instead, an API key, account key or some
        other form of intermediate credential is generated and stored on the
        local host and used to authenticate to remote cloud service APIs.
      - >-
        ─────────────────────────────────────────────────┨┃
        VERSION                │
        1                                                                                                                                                                                                                                             



        ┠────────────────────────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┨


         VERSION_DESCRIPTION     Run #1 of the
        mlflow_training_pipeline.                                                                                                                                                                                                       
        


        ┠────────────────────────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┨


         CREATED_AT              2023-03-01
        09:09:06.899000                                                                                                                                                                                                                    
        


        ┠────────────────────────┼────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┨


         UPDATED_AT              2023-03-01
        09:09:06.899000                                                                                                                                                                                                                    
        
      - >-
        un.py


        Read more in the production guide.


        CleanupMake sure you no longer need the resources before deleting them.
        The instructions and commands that follow are DESTRUCTIVE.


        Delete any AWS resources you no longer use to avoid additional charges.
        You'll want to do the following:


        # delete the S3 bucket


        aws s3 rm s3://your-bucket-name --recursive


        aws s3api delete-bucket --bucket your-bucket-name


        # delete the SageMaker domain


        aws sagemaker delete-domain --domain-id <DOMAIN_ID>


        # delete the ECR repository


        aws ecr delete-repository --repository-name zenml-repository --force


        # detach policies from the IAM role


        aws iam detach-role-policy --role-name zenml-role --policy-arn
        arn:aws:iam::aws:policy/AmazonS3FullAccess


        aws iam detach-role-policy --role-name zenml-role --policy-arn
        arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryFullAccess


        aws iam detach-role-policy --role-name zenml-role --policy-arn
        arn:aws:iam::aws:policy/AmazonSageMakerFullAccess


        # delete the IAM role


        aws iam delete-role --role-name zenml-role


        Make sure to run these commands in the same AWS region where you created
        the resources.


        By running these cleanup commands, you will delete the S3 bucket,
        SageMaker domain, ECR repository, and IAM role, along with their
        associated policies. This will help you avoid any unnecessary charges
        for resources you no longer need.


        Remember to be cautious when deleting resources and ensure that you no
        longer require them before running the deletion commands.


        Conclusion


        In this guide, we walked through the process of setting up an AWS stack
        with ZenML to run your machine learning pipelines in a scalable and
        production-ready environment. The key steps included:


        Setting up credentials and the local environment by creating an IAM role
        with the necessary permissions.


        Creating a ZenML service connector to authenticate with AWS services
        using the IAM role.


        Configuring stack components, including an S3 artifact store, a
        SageMaker Pipelines orchestrator, and an ECR container registry.
  - source_sentence: >-
      Can you provide more information on how to fetch the last successful run
      of a pipeline in ZenML?
    sentences:
      - >-
        Connecting remote storage


        Transitioning to remote artifact storage.


        In the previous chapters, we've been working with artifacts stored
        locally on our machines. This setup is fine for individual experiments,
        but as we move towards a collaborative and production-ready environment,
        we need a solution that is more robust, shareable, and scalable. Enter
        remote storage!


        Remote storage allows us to store our artifacts in the cloud, which
        means they're accessible from anywhere and by anyone with the right
        permissions. This is essential for team collaboration and for managing
        the larger datasets and models that come with production workloads.


        When using a stack with remote storage, nothing changes except the fact
        that the artifacts get materialized in a central and remote storage
        location. This diagram explains the flow:


        Provisioning and registering a remote artifact store


        Out of the box, ZenML ships with many different supported artifact store
        flavors. For convenience, here are some brief instructions on how to
        quickly get up and running on the major cloud providers:


        You will need to install and set up the AWS CLI on your machine as a
        prerequisite, as covered in the AWS CLI documentation, before you
        register the S3 Artifact Store.


        The Amazon Web Services S3 Artifact Store flavor is provided by the S3
        ZenML integration, you need to install it on your local machine to be
        able to register an S3 Artifact Store and add it to your stack:


        zenml integration install s3 -y


        Having trouble with this command? You can use poetry or pip to install
        the requirements of any ZenML integration directly. In order to obtain
        the exact requirements of the AWS S3 integration you can use zenml
        integration requirements s3.


        The only configuration parameter mandatory for registering an S3
        Artifact Store is the root path URI, which needs to point to an S3
        bucket and take the form s3://bucket-name. In order to create a S3
        bucket, refer to the AWS documentation.
      - >-
        Load a Model in code


        There are a few different ways to load a ZenML Model in code:


        Load the active model in a pipeline


        You can also use the active model to get the model metadata, or the
        associated artifacts directly as described in the starter guide:


        from zenml import step, pipeline, get_step_context, pipeline, Model


        @pipeline(model=Model(name="my_model"))


        def my_pipeline():


        ...


        @step


        def my_step():


        # Get model from active step context


        mv = get_step_context().model


        # Get metadata


        print(mv.run_metadata["metadata_key"].value)


        # Directly fetch an artifact that is attached to the model


        output = mv.get_artifact("my_dataset", "my_version")


        output.run_metadata["accuracy"].value


        Load any model via the Client


        Alternatively, you can use the Client:


        from zenml import step


        from zenml.client import Client


        from zenml.enums import ModelStages


        @step


        def model_evaluator_step()


        ...


        # Get staging model version


        try:


        staging_zenml_model = Client().get_model_version(


        model_name_or_id="<INSERT_MODEL_NAME>",


        model_version_name_or_number_or_id=ModelStages.STAGING,


        except KeyError:


        staging_zenml_model = None


        ...


        PreviousControlling Model versions


        NextPromote a Model


        Last updated 19 days ago
      - >2-
         more information.

        Get the last run of a pipelineTo access the most recent run of a
        pipeline, you can either use the last_run property or access it through
        the runs list:


        last_run = pipeline_model.last_run  # OR: pipeline_model.runs[0]


        If your most recent runs have failed, and you want to find the last run
        that has succeeded, you can use the last_successful_run property
        instead.


        Get the latest run from a pipeline


        Calling a pipeline executes it and then returns the response of the
        freshly executed run.


        run = training_pipeline()


        The run that you get back is the model stored in the ZenML database at
        the point of the method call. This means the pipeline run is still
        initializing and no steps have been run. To get the latest state can get
        a refreshed version from the client:


        from zenml.client import Client


        Client().get_pipeline_run(run.id) to get a refreshed version


        Get a run via the client


        If you already know the exact run that you want to fetch (e.g., from
        looking at the dashboard), you can use the Client.get_pipeline_run()
        method to fetch the run directly without having to query the pipeline
        first:


        from zenml.client import Client


        pipeline_run =
        Client().get_pipeline_run("first_pipeline-2023_06_20-16_20_13_274466")


        Similar to pipelines, you can query runs by either ID, name, or name
        prefix, and you can also discover runs through the Client or CLI via the
        Client.list_pipeline_runs() or zenml pipeline runs list commands.


        Run information


        Each run has a collection of useful information which can help you
        reproduce your runs. In the following, you can find a list of some of
        the most useful pipeline run information, but there is much more
        available. See the PipelineRunResponse definition for a comprehensive
        list.


        Status


        The status of a pipeline run. There are five possible states:
        initialized, failed, completed, running, and cached.


        status = run.status


        Configuration
  - source_sentence: >-
      How does the code in the given documentation visualize the embeddings
      using t-SNE and UMAP?
    sentences:
      - >-


        embeddings_2d[mask, 0],


        embeddings_2d[mask, 1],c=[section_color_dict[section]],


        label=section,


        plt.title("t-SNE Visualization")


        plt.legend()


        plt.show()


        # Dimensionality reduction using UMAP


        def umap_visualization(embeddings, parent_sections):


        umap_2d = umap.UMAP(n_components=2, random_state=42)


        embeddings_2d = umap_2d.fit_transform(embeddings)


        plt.figure(figsize=(8, 8))


        for section in unique_parent_sections:


        if section in section_color_dict:


        mask = [section == ps for ps in parent_sections]


        plt.scatter(


        embeddings_2d[mask, 0],


        embeddings_2d[mask, 1],


        c=[section_color_dict[section]],


        label=section,


        plt.title("UMAP Visualization")


        plt.legend()


        plt.show()


        In this stage, we have utilized the 'parent directory', which we had
        previously stored in the vector store as an additional attribute, as a
        means to color the values. This approach allows us to gain some insight
        into the semantic space inherent in our data. It demonstrates that you
        can visualize the embeddings and observe how similar chunks are grouped
        together based on their semantic meaning and context.


        So this step iterates through all the chunks and generates embeddings
        representing each piece of text. These embeddings are then stored as an
        artifact in the ZenML artifact store as a NumPy array. We separate this
        generation from the point where we upload those embeddings to the vector
        database to keep the pipeline modular and flexible; in the future we
        might want to use a different vector database so we can just swap out
        the upload step without having to re-generate the embeddings.


        In the next section, we'll explore how to store these embeddings in a
        vector database to enable fast and efficient retrieval of relevant
        chunks at inference time.


        Code Example


        To explore the full code, visit the Complete Guide repository. The
        embeddings generation step can be found here.


        PreviousData ingestion and preprocessing


        NextStoring embeddings in a vector database


        Last updated 2 months ago
      - >-
        Amazon SageMaker


        Executing individual steps in SageMaker.


        SageMaker offers specialized compute instances to run your training jobs
        and has a comprehensive UI to track and manage your models and logs.
        ZenML's SageMaker step operator allows you to submit individual steps to
        be run on Sagemaker compute instances.


        When to use it


        You should use the SageMaker step operator if:


        one or more steps of your pipeline require computing resources (CPU,
        GPU, memory) that are not provided by your orchestrator.


        you have access to SageMaker. If you're using a different cloud
        provider, take a look at the Vertex or AzureML step operators.


        How to deploy it


        Create a role in the IAM console that you want the jobs running in
        SageMaker to assume. This role should at least have the
        AmazonS3FullAccess and AmazonSageMakerFullAccess policies applied. Check
        here for a guide on how to set up this role.


        Infrastructure Deployment


        A Sagemaker step operator can be deployed directly from the ZenML CLI:


        zenml orchestrator deploy sagemaker_step_operator --flavor=sagemaker
        --provider=aws ...


        You can pass other configurations specific to the stack components as
        key-value arguments. If you don't provide a name, a random one is
        generated for you. For more information about how to work use the CLI
        for this, please refer to the dedicated documentation section.


        How to use it


        To use the SageMaker step operator, we need:


        The ZenML aws integration installed. If you haven't done so,
        runCopyzenml integration install aws


        Docker installed and running.


        An IAM role with the correct permissions. See the deployment section for
        detailed instructions.


        An AWS container registry as part of our stack. Take a look here for a
        guide on how to set that up.
      - >-
        Deploy with Docker


        Deploying ZenML in a Docker container.


        The ZenML server container image is available at
        zenmldocker/zenml-server and can be used to deploy ZenML with a
        container management or orchestration tool like Docker and
        docker-compose, or a serverless platform like Cloud Run, Container Apps,
        and more! This guide walks you through the various configuration options
        that the ZenML server container expects as well as a few deployment use
        cases.


        Try it out locally first


        If you're just looking for a quick way to deploy the ZenML server using
        a container, without going through the hassle of interacting with a
        container management tool like Docker and manually configuring your
        container, you can use the ZenML CLI to do so. You only need to have
        Docker installed and running on your machine:


        zenml up --docker


        This command deploys a ZenML server locally in a Docker container, then
        connects your client to it. Similar to running plain zenml up, the
        server and the local ZenML client share the same SQLite database.


        The rest of this guide is addressed to advanced users who are looking to
        manually deploy and manage a containerized ZenML server.


        ZenML server configuration options


        If you're planning on deploying a custom containerized ZenML server
        yourself, you probably need to configure some settings for it like the
        database it should use, the default user details, and more. The ZenML
        server container image uses sensible defaults, so you can simply start a
        container without worrying too much about the configuration. However, if
        you're looking to connect the ZenML server to an external MySQL database
        or secrets management service, to persist the internal SQLite database,
        or simply want to control other settings like the default account, you
        can do so by customizing the container's environment variables.


        The following environment variables can be passed to the container:
  - source_sentence: What is the purpose of the `enable_step_logs` parameter in ZenML?
    sentences:
      - >-
        Collect information from your SQL database serviceUsing an external
        MySQL-compatible database service is optional, but is recommended for
        production deployments. If omitted, ZenML will default to using an
        embedded SQLite database, which has the following limitations:


        the SQLite database is not persisted, meaning that it will be lost if
        the ZenML server pod is restarted or deleted


        the SQLite database does not scale horizontally, meaning that you will
        not be able to use more than one replica at a time for the ZenML server
        pod


        If you decide to use an external MySQL-compatible database service, you
        will need to collect and prepare the following information for the Helm
        chart configuration:


        the hostname and port where the SQL database is reachable from the
        Kubernetes cluster


        the username and password that will be used to connect to the database.
        It is recommended that you create a dedicated database user for the
        ZenML server and that you restrict its privileges to only access the
        database that will be used by ZenML. Enforcing secure SSL connections
        for the user/database is also recommended. See the MySQL documentation
        for more information on how to set up users and privileges.


        the name of the database that will be used by ZenML. The database does
        not have to exist prior to the deployment ( ZenML will create it on the
        first start). However, you need to create the database if you follow the
        best practice of restricting database user privileges to only access it.


        if you plan on using SSL to secure the client database connection, you
        may also need to prepare additional SSL certificates and keys:the TLS CA
        certificate that was used to sign the server TLS certificate, if you're
        using a self-signed certificate or signed by a custom certificate
        authority that is not already trusted by default by most operating
        systems.the TLS client certificate and key. This is only needed if you
        decide to use client certificates for your DB connection (some managed
        DB services support this, CloudSQL is an example).
      - >2-
                │ SHARED │ OWNER   │ EXPIRES IN │ LABELS ┃┠────────┼────────────────────────┼──────────────────────────────────────┼────────┼───────────────────────┼─────────────────────────┼────────┼─────────┼────────────┼────────┨

                 gcp-multi               9d953320-3560-4a78-817c-926a3898064d
         🔵 gcp  🔵 gcp-generic         <multiple>                    
        default                     


                                                                             
                 📦 gcs-bucket                                         
                                     


                                                                             
                 🌀 kubernetes-cluster                                 
                                     


                                                                             
                 🐳 docker-registry                                    
                                     


        ┠────────┼────────────────────────┼──────────────────────────────────────┼────────┼───────────────────────┼─────────────────────────┼────────┼─────────┼────────────┼────────┨


                 gcs-multi               ff9c0723-7451-46b7-93ef-fcf3efde30fa
         🔵 gcp  📦 gcs-bucket          <multiple>                    
        default                     


        ┠────────┼────────────────────────┼──────────────────────────────────────┼────────┼───────────────────────┼─────────────────────────┼────────┼─────────┼────────────┼────────┨


                 gcs-langchain-slackbot  cf3953e9-414c-4875-ba00-24c62a0dc0c5
         🔵 gcp  📦 gcs-bucket          gs://langchain-slackbot       
        default                     


        ┗━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━┷━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━┛


        Local and remote availability
      - >-
        onfiguration, if specified overrides for this
        stepenable_artifact_metadata: True


        enable_artifact_visualization: True


        enable_cache: False


        enable_step_logs: True


        # Same as pipeline level configuration, if specified overrides for this
        step


        extra: {}


        # Same as pipeline level configuration, if specified overrides for this
        step


        model: {}


        # Same as pipeline level configuration, if specified overrides for this
        step


        settings:


        docker: {}


        resources: {}


        # Stack component specific settings


        step_operator.sagemaker:


        estimator_args:


        instance_type: m7g.medium


        Deep-dive


        enable_XXX parameters


        These are boolean flags for various configurations:


        enable_artifact_metadata: Whether to associate metadata with artifacts
        or not.


        enable_artifact_visualization: Whether to attach visualizations of
        artifacts.


        enable_cache: Utilize caching or not.


        enable_step_logs: Enable tracking step logs.


        enable_artifact_metadata: True


        enable_artifact_visualization: True


        enable_cache: True


        enable_step_logs: True


        build ID


        The UUID of the build to use for this pipeline. If specified, Docker
        image building is skipped for remote orchestrators, and the Docker image
        specified in this build is used.


        build: <INSERT-BUILD-ID-HERE>


        Configuring the model


        Specifies the ZenML Model to use for this pipeline.


        model:


        name: "ModelName"


        version: "production"


        description: An example model


        tags: ["classifier"]


        Pipeline and step parameters


        A dictionary of JSON-serializable parameters specified at the pipeline
        or step level. For example:


        parameters:


        gamma: 0.01


        steps:


        trainer:


        parameters:


        gamma: 0.001


        Corresponds to:


        from zenml import step, pipeline


        @step


        def trainer(gamma: float):


        # Use gamma as normal


        print(gamma)


        @pipeline


        def my_pipeline(gamma: float):


        # use gamma or pass it into the step


        print(0.01)


        trainer(gamma=gamma)
  - source_sentence: >-
      Can I use ZenML to register an S3 Artifact Store after setting up the IAM
      user and generating the access key?
    sentences:
      - >2-
         to install and configure the AWS CLI on your hostyou don't need to care about enabling your other stack components (orchestrators, step operators, and model deployers) to have access to the artifact store through IAM roles and policies

        you can combine the S3 artifact store with other stack components that
        are not running in AWS


        Note: When you create the IAM user for your AWS access key, please
        remember to grant the created IAM user permissions to read and write to
        your S3 bucket (i.e. at a minimum: s3:PutObject, s3:GetObject,
        s3:ListBucket, s3:DeleteObject)


        After having set up the IAM user and generated the access key, as
        described in the AWS documentation, you can register the S3 Artifact
        Store as follows:


        # Store the AWS access key in a ZenML secret


        zenml secret create s3_secret \


        --aws_access_key_id='<YOUR_S3_ACCESS_KEY_ID>' \


        --aws_secret_access_key='<YOUR_S3_SECRET_KEY>'


        # Register the S3 artifact-store and reference the ZenML secret


        zenml artifact-store register s3_store -f s3 \


        --path='s3://your-bucket' \


        --authentication_secret=s3_secret


        # Register and set a stack with the new artifact store


        zenml stack register custom_stack -a s3_store ... --set


        Advanced Configuration


        The S3 Artifact Store accepts a range of advanced configuration options
        that can be used to further customize how ZenML connects to the S3
        storage service that you are using. These are accessible via the
        client_kwargs, config_kwargs and s3_additional_kwargs configuration
        attributes and are passed transparently to the underlying S3Fs library:


        client_kwargs: arguments that will be transparently passed to the
        botocore client . You can use it to configure parameters like
        endpoint_url and region_name when connecting to an S3-compatible
        endpoint (e.g. Minio).


        config_kwargs: advanced parameters passed to botocore.client.Config.


        s3_additional_kwargs: advanced parameters that are used when calling S3
        API, typically used for things like ServerSideEncryption and ACL.
      - >-
        Evidently


        How to keep your data quality in check and guard against data and model
        drift with Evidently profiling


        The Evidently Data Validator flavor provided with the ZenML integration
        uses Evidently to perform data quality, data drift, model drift and
        model performance analyses, to generate reports and run checks. The
        reports and check results can be used to implement automated corrective
        actions in your pipelines or to render interactive representations for
        further visual interpretation, evaluation and documentation.


        When would you want to use it?


        Evidently is an open-source library that you can use to monitor and
        debug machine learning models by analyzing the data that they use
        through a powerful set of data profiling and visualization features, or
        to run a variety of data and model validation reports and tests, from
        data integrity tests that work with a single dataset to model evaluation
        tests to data drift analysis and model performance comparison tests. All
        this can be done with minimal configuration input from the user, or
        customized with specialized conditions that the validation tests should
        perform.


        Evidently currently works with tabular data in pandas.DataFrame or CSV
        file formats and can handle both regression and classification tasks.


        You should use the Evidently Data Validator when you need the following
        data and/or model validation features that are possible with Evidently:


        Data Quality reports and tests: provides detailed feature statistics and
        a feature behavior overview for a single dataset. It can also compare
        any two datasets. E.g. you can use it to compare train and test data,
        reference and current data, or two subgroups of one dataset.


        Data Drift reports and tests: helps detects and explore feature
        distribution changes in the input data by comparing two datasets with
        identical schema.
      - >2-
         us know!

        Configuration at pipeline or step levelWhen running your ZenML pipeline
        with the Sagemaker orchestrator, the configuration set when configuring
        the orchestrator as a ZenML component will be used by default. However,
        it is possible to provide additional configuration at the pipeline or
        step level. This allows you to run whole pipelines or individual steps
        with alternative configurations. For example, this allows you to run the
        training process with a heavier, GPU-enabled instance type, while
        running other steps with lighter instances.


        Additional configuration for the Sagemaker orchestrator can be passed
        via SagemakerOrchestratorSettings. Here, it is possible to configure
        processor_args, which is a dictionary of arguments for the Processor.
        For available arguments, see the Sagemaker documentation . Currently, it
        is not possible to provide custom configuration for the following
        attributes:


        image_uri


        instance_count


        sagemaker_session


        entrypoint


        base_job_name


        env


        For example, settings can be provided in the following way:


        sagemaker_orchestrator_settings = SagemakerOrchestratorSettings(


        processor_args={


        "instance_type": "ml.t3.medium",


        "volume_size_in_gb": 30


        They can then be applied to a step as follows:


        @step(settings={"orchestrator.sagemaker":
        sagemaker_orchestrator_settings})


        For example, if your ZenML component is configured to use ml.c5.xlarge
        with 400GB additional storage by default, all steps will use it except
        for the step above, which will use ml.t3.medium with 30GB additional
        storage.


        Check out this docs page for more information on how to specify settings
        in general.


        For more information and a full list of configurable attributes of the
        Sagemaker orchestrator, check out the SDK Docs .


        S3 data access in ZenML steps
model-index:
  - name: zenml/finetuned-all-MiniLM-L6-v2
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 384
          type: dim_384
        metrics:
          - type: cosine_accuracy@1
            value: 0.3313253012048193
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.6024096385542169
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6927710843373494
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7710843373493976
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.3313253012048193
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2008032128514056
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.13855421686746985
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07710843373493974
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.3313253012048193
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.6024096385542169
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6927710843373494
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7710843373493976
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.551850042031417
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4812392426850258
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.48905601510986996
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.3253012048192771
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5903614457831325
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6867469879518072
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7710843373493976
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.3253012048192771
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.19678714859437746
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.13734939759036144
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07710843373493974
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.3253012048192771
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5903614457831325
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6867469879518072
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7710843373493976
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5441628856415894
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4714883342895392
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4790082728748276
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.3313253012048193
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5120481927710844
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6144578313253012
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6987951807228916
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.3313253012048193
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.1706827309236948
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.12289156626506023
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.06987951807228915
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.3313253012048193
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5120481927710844
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6144578313253012
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.6987951807228916
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5108893388836802
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.45126936316695354
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4605530012141939
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.2891566265060241
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.4759036144578313
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5542168674698795
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6265060240963856
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.2891566265060241
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.15863453815261044
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1108433734939759
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.06265060240963854
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.2891566265060241
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.4759036144578313
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5542168674698795
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.6265060240963856
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.45650145038804574
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.40227337923121054
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4137670603435629
            name: Cosine Map@100

zenml/finetuned-all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("zenml/finetuned-all-MiniLM-L6-v2")
# Run inference
sentences = [
    'Can I use ZenML to register an S3 Artifact Store after setting up the IAM user and generating the access key?',
    " to install and configure the AWS CLI on your hostyou don't need to care about enabling your other stack components (orchestrators, step operators, and model deployers) to have access to the artifact store through IAM roles and policies\n\nyou can combine the S3 artifact store with other stack components that are not running in AWS\n\nNote: When you create the IAM user for your AWS access key, please remember to grant the created IAM user permissions to read and write to your S3 bucket (i.e. at a minimum: s3:PutObject, s3:GetObject, s3:ListBucket, s3:DeleteObject)\n\nAfter having set up the IAM user and generated the access key, as described in the AWS documentation, you can register the S3 Artifact Store as follows:\n\n# Store the AWS access key in a ZenML secret\n\nzenml secret create s3_secret \\\n\n--aws_access_key_id='<YOUR_S3_ACCESS_KEY_ID>' \\\n\n--aws_secret_access_key='<YOUR_S3_SECRET_KEY>'\n\n# Register the S3 artifact-store and reference the ZenML secret\n\nzenml artifact-store register s3_store -f s3 \\\n\n--path='s3://your-bucket' \\\n\n--authentication_secret=s3_secret\n\n# Register and set a stack with the new artifact store\n\nzenml stack register custom_stack -a s3_store ... --set\n\nAdvanced Configuration\n\nThe S3 Artifact Store accepts a range of advanced configuration options that can be used to further customize how ZenML connects to the S3 storage service that you are using. These are accessible via the client_kwargs, config_kwargs and s3_additional_kwargs configuration attributes and are passed transparently to the underlying S3Fs library:\n\nclient_kwargs: arguments that will be transparently passed to the botocore client . You can use it to configure parameters like endpoint_url and region_name when connecting to an S3-compatible endpoint (e.g. Minio).\n\nconfig_kwargs: advanced parameters passed to botocore.client.Config.\n\ns3_additional_kwargs: advanced parameters that are used when calling S3 API, typically used for things like ServerSideEncryption and ACL.",
    ' us know!\n\nConfiguration at pipeline or step levelWhen running your ZenML pipeline with the Sagemaker orchestrator, the configuration set when configuring the orchestrator as a ZenML component will be used by default. However, it is possible to provide additional configuration at the pipeline or step level. This allows you to run whole pipelines or individual steps with alternative configurations. For example, this allows you to run the training process with a heavier, GPU-enabled instance type, while running other steps with lighter instances.\n\nAdditional configuration for the Sagemaker orchestrator can be passed via SagemakerOrchestratorSettings. Here, it is possible to configure processor_args, which is a dictionary of arguments for the Processor. For available arguments, see the Sagemaker documentation . Currently, it is not possible to provide custom configuration for the following attributes:\n\nimage_uri\n\ninstance_count\n\nsagemaker_session\n\nentrypoint\n\nbase_job_name\n\nenv\n\nFor example, settings can be provided in the following way:\n\nsagemaker_orchestrator_settings = SagemakerOrchestratorSettings(\n\nprocessor_args={\n\n"instance_type": "ml.t3.medium",\n\n"volume_size_in_gb": 30\n\nThey can then be applied to a step as follows:\n\n@step(settings={"orchestrator.sagemaker": sagemaker_orchestrator_settings})\n\nFor example, if your ZenML component is configured to use ml.c5.xlarge with 400GB additional storage by default, all steps will use it except for the step above, which will use ml.t3.medium with 30GB additional storage.\n\nCheck out this docs page for more information on how to specify settings in general.\n\nFor more information and a full list of configurable attributes of the Sagemaker orchestrator, check out the SDK Docs .\n\nS3 data access in ZenML steps',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.3313
cosine_accuracy@3 0.6024
cosine_accuracy@5 0.6928
cosine_accuracy@10 0.7711
cosine_precision@1 0.3313
cosine_precision@3 0.2008
cosine_precision@5 0.1386
cosine_precision@10 0.0771
cosine_recall@1 0.3313
cosine_recall@3 0.6024
cosine_recall@5 0.6928
cosine_recall@10 0.7711
cosine_ndcg@10 0.5519
cosine_mrr@10 0.4812
cosine_map@100 0.4891

Information Retrieval

Metric Value
cosine_accuracy@1 0.3253
cosine_accuracy@3 0.5904
cosine_accuracy@5 0.6867
cosine_accuracy@10 0.7711
cosine_precision@1 0.3253
cosine_precision@3 0.1968
cosine_precision@5 0.1373
cosine_precision@10 0.0771
cosine_recall@1 0.3253
cosine_recall@3 0.5904
cosine_recall@5 0.6867
cosine_recall@10 0.7711
cosine_ndcg@10 0.5442
cosine_mrr@10 0.4715
cosine_map@100 0.479

Information Retrieval

Metric Value
cosine_accuracy@1 0.3313
cosine_accuracy@3 0.512
cosine_accuracy@5 0.6145
cosine_accuracy@10 0.6988
cosine_precision@1 0.3313
cosine_precision@3 0.1707
cosine_precision@5 0.1229
cosine_precision@10 0.0699
cosine_recall@1 0.3313
cosine_recall@3 0.512
cosine_recall@5 0.6145
cosine_recall@10 0.6988
cosine_ndcg@10 0.5109
cosine_mrr@10 0.4513
cosine_map@100 0.4606

Information Retrieval

Metric Value
cosine_accuracy@1 0.2892
cosine_accuracy@3 0.4759
cosine_accuracy@5 0.5542
cosine_accuracy@10 0.6265
cosine_precision@1 0.2892
cosine_precision@3 0.1586
cosine_precision@5 0.1108
cosine_precision@10 0.0627
cosine_recall@1 0.2892
cosine_recall@3 0.4759
cosine_recall@5 0.5542
cosine_recall@10 0.6265
cosine_ndcg@10 0.4565
cosine_mrr@10 0.4023
cosine_map@100 0.4138

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,490 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 9 tokens
    • mean: 21.16 tokens
    • max: 49 tokens
    • min: 21 tokens
    • mean: 239.82 tokens
    • max: 256 tokens
  • Samples:
    positive anchor
    Could you explain how to configure step-specific settings like the experiment_tracker and step_operator in ZenML docs? docs.

    failure_hook_source and success_hook_sourceThe source of the failure and success hooks can be specified.

    Step-specific configuration

    A lot of pipeline-level configuration can also be applied at a step level (as we have already seen with the enable_cache flag). However, there is some configuration that is step-specific, meaning it cannot be applied at a pipeline level, but only at a step level.

    experiment_tracker: Name of the experiment_tracker to enable for this step. This experiment_tracker should be defined in the active stack with the same name.

    step_operator: Name of the step_operator to enable for this step. This step_operator should be defined in the active stack with the same name.

    outputs: This is configuration of the output artifacts of this step. This is further keyed by output name (by default, step outputs are named output). The most interesting configuration here is the materializer_source, which is the UDF path of the materializer in code to use for this output (e.g. materializers.some_data.materializer.materializer_class). Read more about this source path here.

    PreviousHow to configure a pipeline with a YAML

    NextRuntime settings for Docker, resources, and stack components

    Last updated 19 days ago
    How do I configure ZenML to use the Azure Key Vault as a secrets store backend? COUNT_NAME>@.iam.gserviceaccount.comUsing the Azure Key Vault as a secrets store backend

    The Azure Secrets Store uses the ZenML Azure Service Connector under the hood to authenticate with the Azure Key Vault API. This means that you can use any of the authentication methods supported by the Azure Service Connector to authenticate with the Azure Key Vault API.

    Example configuration for the Azure Key Vault Secrets Store:

    zenml:

    # ...

    # Secrets store settings. This is used to store centralized secrets.

    secretsStore:

    # Set to false to disable the secrets store.

    enabled: true

    # The type of the secrets store

    type: azure

    # Configuration for the Azure Key Vault secrets store

    azure:

    # The name of the Azure Key Vault. This must be set to point to the Azure

    # Key Vault instance that you want to use.

    key_vault_name:

    # The Azure Service Connector authentication method to use.

    authMethod: service-principal

    # The Azure Service Connector configuration.

    authConfig:

    # The Azure application service principal credentials to use to

    # authenticate with the Azure Key Vault API.

    client_id:

    client_secret:

    tenant_id:

    Using the HashiCorp Vault as a secrets store backend

    To use the HashiCorp Vault service as a Secrets Store back-end, it must be configured in the Helm values:

    zenml:

    # ...

    # Secrets store settings. This is used to store centralized secrets.

    secretsStore:

    # Set to false to disable the secrets store.

    enabled: true

    # The type of the secrets store

    type: hashicorp

    # Configuration for the HashiCorp Vault secrets store

    hashicorp:

    # The url of the HashiCorp Vault server to use

    vault_addr: https://vault.example.com

    # The token used to authenticate with the Vault server

    vault_token:

    # The Vault Enterprise namespace. Not required for Vault OSS.

    vault_namespace:

    Using a custom secrets store backend implementation
    How do I register a service connector with AWS using ZenML? r the local cloud provider CLI (AWS in this case):AWS_PROFILE=connectors zenml service-connector register aws-sts-token --type aws --auto-configure --auth-method sts-token

    Example Command Output

    ⠸ Registering service connector 'aws-sts-token'...

    Successfully registered service connector aws-sts-token with access to the following resources:

    ┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓

    ┃ RESOURCE TYPE │ RESOURCE NAMES ┃

    ┠───────────────────────┼──────────────────────────────────────────────┨

    ┃ 🔶 aws-generic │ us-east-1 ┃

    ┠───────────────────────┼──────────────────────────────────────────────┨

    ┃ 📦 s3-bucket │ s3://zenfiles ┃

    ┃ │ s3://zenml-demos ┃

    ┃ │ s3://zenml-generative-chat ┃

    ┃ │ s3://zenml-public-datasets ┃

    ┠───────────────────────┼──────────────────────────────────────────────┨

    ┃ 🌀 kubernetes-cluster │ zenhacks-cluster ┃

    ┠───────────────────────┼──────────────────────────────────────────────┨

    ┃ 🐳 docker-registry │ 715803424590.dkr.ecr.us-east-1.amazonaws.com ┃

    ┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

    The Service Connector is now configured with a short-lived token that will expire after some time. You can verify this by inspecting the Service Connector:

    zenml service-connector describe aws-sts-token

    Example Command Output

    Service connector 'aws-sts-token' of type 'aws' with id '63e14350-6719-4255-b3f5-0539c8f7c303' is owned by user 'default' and is 'private'.

    'aws-sts-token' aws Service Connector Details

    ┏━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓

    ┃ PROPERTY │ VALUE ┃
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            384,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: True
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step dim_128_cosine_map@100 dim_256_cosine_map@100 dim_384_cosine_map@100 dim_64_cosine_map@100
0.6667 1 0.4231 0.4458 0.4525 0.3907
2.0 3 0.4526 0.4745 0.4875 0.4114
2.6667 4 0.4606 0.479 0.4891 0.4138
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}