gte-large-sparse / README.md
zeroshot's picture
Update README.md
47911f8
metadata
tags:
  - sparse sparsity quantized onnx embeddings int8
  - mteb
model-index:
  - name: gte-large-sparse
    results:
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 88.64253410928214
          - type: cos_sim_spearman
            value: 85.83388349410652
          - type: euclidean_pearson
            value: 86.86126159318735
          - type: euclidean_spearman
            value: 85.61580623591163
          - type: manhattan_pearson
            value: 86.6901132883383
          - type: manhattan_spearman
            value: 85.60255292187769
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 85.23314640591607
          - type: cos_sim_spearman
            value: 79.00078545104338
          - type: euclidean_pearson
            value: 83.48009254500714
          - type: euclidean_spearman
            value: 78.95413001389939
          - type: manhattan_pearson
            value: 83.46945566025941
          - type: manhattan_spearman
            value: 78.9241707208135
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 81.77526666043804
          - type: cos_sim_spearman
            value: 73.4849063285867
          - type: euclidean_pearson
            value: 78.04477932740524
          - type: euclidean_spearman
            value: 73.01394205771743
          - type: manhattan_pearson
            value: 78.08836684503294
          - type: manhattan_spearman
            value: 73.05074711098149
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 84.57839215661352
          - type: cos_sim_spearman
            value: 86.13854767345153
          - type: euclidean_pearson
            value: 85.12712609946449
          - type: euclidean_spearman
            value: 85.52497994789026
          - type: manhattan_pearson
            value: 85.06833141611173
          - type: manhattan_spearman
            value: 85.45003068636466
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 83.30485126978374
          - type: cos_sim_spearman
            value: 80.36497172462357
          - type: euclidean_pearson
            value: 82.91977909424605
          - type: euclidean_spearman
            value: 80.16995106297438
          - type: manhattan_pearson
            value: 82.88200991402184
          - type: manhattan_spearman
            value: 80.14259757215227
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 86.99883111314007
          - type: cos_sim_spearman
            value: 88.531352572377
          - type: euclidean_pearson
            value: 87.96834578059067
          - type: euclidean_spearman
            value: 88.44800718542935
          - type: manhattan_pearson
            value: 87.94889391725033
          - type: manhattan_spearman
            value: 88.45467695837115
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 82.4636984892402
          - type: cos_sim_spearman
            value: 84.0808920789148
          - type: euclidean_pearson
            value: 83.70613486028309
          - type: euclidean_spearman
            value: 84.35941626905009
          - type: manhattan_pearson
            value: 83.70259457073782
          - type: manhattan_spearman
            value: 84.35496521501604
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 88.76172944971023
          - type: cos_sim_spearman
            value: 89.4190945039165
          - type: euclidean_pearson
            value: 89.47263005347381
          - type: euclidean_spearman
            value: 89.49228360724095
          - type: manhattan_pearson
            value: 89.49959868816694
          - type: manhattan_spearman
            value: 89.5314536157954
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 64.57158223787549
          - type: cos_sim_spearman
            value: 66.75053533168037
          - type: euclidean_pearson
            value: 66.45526604831747
          - type: euclidean_spearman
            value: 66.14567667353113
          - type: manhattan_pearson
            value: 66.47352000151176
          - type: manhattan_spearman
            value: 66.21099856852885
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 85.055653571006
          - type: cos_sim_spearman
            value: 85.45387832634702
          - type: euclidean_pearson
            value: 86.31667154906651
          - type: euclidean_spearman
            value: 85.66079590537946
          - type: manhattan_pearson
            value: 86.2806853257308
          - type: manhattan_spearman
            value: 85.63700636713952
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.78811881188119
          - type: cos_sim_ap
            value: 94.67027715905307
          - type: cos_sim_f1
            value: 89.33074684772066
          - type: cos_sim_precision
            value: 86.7231638418079
          - type: cos_sim_recall
            value: 92.10000000000001
          - type: dot_accuracy
            value: 99.47128712871287
          - type: dot_ap
            value: 78.41478815918727
          - type: dot_f1
            value: 73.30049261083744
          - type: dot_precision
            value: 72.23300970873787
          - type: dot_recall
            value: 74.4
          - type: euclidean_accuracy
            value: 99.78415841584159
          - type: euclidean_ap
            value: 94.60075930867181
          - type: euclidean_f1
            value: 89.12175648702593
          - type: euclidean_precision
            value: 88.94422310756973
          - type: euclidean_recall
            value: 89.3
          - type: manhattan_accuracy
            value: 99.78415841584159
          - type: manhattan_ap
            value: 94.62867439278095
          - type: manhattan_f1
            value: 89.2337536372454
          - type: manhattan_precision
            value: 86.62900188323917
          - type: manhattan_recall
            value: 92
          - type: max_accuracy
            value: 99.78811881188119
          - type: max_ap
            value: 94.67027715905307
          - type: max_f1
            value: 89.33074684772066
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 85.09864695714371
          - type: cos_sim_ap
            value: 70.33704198164713
          - type: cos_sim_f1
            value: 66.22893954410307
          - type: cos_sim_precision
            value: 62.42410088743577
          - type: cos_sim_recall
            value: 70.52770448548813
          - type: dot_accuracy
            value: 79.11426357513263
          - type: dot_ap
            value: 49.15484584572233
          - type: dot_f1
            value: 51.12580243364951
          - type: dot_precision
            value: 40.13840830449827
          - type: dot_recall
            value: 70.3957783641161
          - type: euclidean_accuracy
            value: 85.15825236931514
          - type: euclidean_ap
            value: 70.51017350854076
          - type: euclidean_f1
            value: 66.45416294785159
          - type: euclidean_precision
            value: 64.29805082654823
          - type: euclidean_recall
            value: 68.7598944591029
          - type: manhattan_accuracy
            value: 85.1403707456637
          - type: manhattan_ap
            value: 70.47587863399994
          - type: manhattan_f1
            value: 66.4576802507837
          - type: manhattan_precision
            value: 63.32138590203107
          - type: manhattan_recall
            value: 69.92084432717678
          - type: max_accuracy
            value: 85.15825236931514
          - type: max_ap
            value: 70.51017350854076
          - type: max_f1
            value: 66.4576802507837
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.8539604921023
          - type: cos_sim_ap
            value: 85.71869912577101
          - type: cos_sim_f1
            value: 78.00535626720983
          - type: cos_sim_precision
            value: 76.46232344893885
          - type: cos_sim_recall
            value: 79.61194949183862
          - type: dot_accuracy
            value: 84.57717235223348
          - type: dot_ap
            value: 74.89496650237145
          - type: dot_f1
            value: 69.05327823892932
          - type: dot_precision
            value: 65.75666829166377
          - type: dot_recall
            value: 72.69787496150293
          - type: euclidean_accuracy
            value: 88.89471028835332
          - type: euclidean_ap
            value: 85.75169460500409
          - type: euclidean_f1
            value: 78.17055393586006
          - type: euclidean_precision
            value: 74.21118184334348
          - type: euclidean_recall
            value: 82.57622420696026
          - type: manhattan_accuracy
            value: 88.92187681918733
          - type: manhattan_ap
            value: 85.7496679471825
          - type: manhattan_f1
            value: 78.11088295687884
          - type: manhattan_precision
            value: 75.82083061535117
          - type: manhattan_recall
            value: 80.5435786880197
          - type: max_accuracy
            value: 88.92187681918733
          - type: max_ap
            value: 85.75169460500409
          - type: max_f1
            value: 78.17055393586006
license: mit
language:
  - en

gte-large-sparse

This is the sparse ONNX variant of the gte-large embeddings model created with DeepSparse Optimum for ONNX export/inference and Neural Magic's Sparsify for one-shot quantization (INT8) and unstructured pruning 50%.

Current list of sparse and quantized gte ONNX models:

Links Sparsification Method
zeroshot/gte-large-sparse Quantization (INT8) & 50% Pruning
zeroshot/gte-large-quant Quantization (INT8)
zeroshot/gte-base-sparse Quantization (INT8) & 50% Pruning
zeroshot/gte-base-quant Quantization (INT8)
zeroshot/gte-small-sparse Quantization (INT8) & 50% Pruning
zeroshot/gte-small-quant Quantization (INT8)
pip install -U deepsparse-nightly[sentence_transformers]
from deepsparse.sentence_transformers import SentenceTransformer
model = SentenceTransformer('zeroshot/gte-large-sparse', export=False)

# Our sentences we like to encode
sentences = ['This framework generates embeddings for each input sentence',
    'Sentences are passed as a list of string.',
    'The quick brown fox jumps over the lazy dog.']

# Sentences are encoded by calling model.encode()
embeddings = model.encode(sentences)

# Print the embeddings
for sentence, embedding in zip(sentences, embeddings):
    print("Sentence:", sentence)
    print("Embedding:", embedding.shape)
    print("")

For further details regarding DeepSparse & Sentence Transformers integration, refer to the DeepSparse README.

For general questions on these models and sparsification methods, reach out to the engineering team on our community Slack.

;)