File size: 2,605 Bytes
7b51441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: facebook/convnextv2-base-22k-384
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 10-convnextv2-base-22k-384-finetuned-spiderTraining20-500
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 10-convnextv2-base-22k-384-finetuned-spiderTraining20-500

This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co/facebook/convnextv2-base-22k-384) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1779
- Accuracy: 0.9489
- Precision: 0.9485
- Recall: 0.9477
- F1: 0.9476

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 25
- eval_batch_size: 25
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 100
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.7479        | 1.0   | 80   | 0.5460          | 0.8238   | 0.8427    | 0.8154 | 0.8203 |
| 0.6232        | 2.0   | 160  | 0.4423          | 0.8619   | 0.8735    | 0.8584 | 0.8573 |
| 0.5591        | 3.0   | 240  | 0.4042          | 0.8769   | 0.8862    | 0.8662 | 0.8702 |
| 0.4503        | 4.0   | 320  | 0.3648          | 0.8839   | 0.8937    | 0.8811 | 0.8807 |
| 0.3479        | 5.0   | 400  | 0.3523          | 0.8989   | 0.8996    | 0.8956 | 0.8945 |
| 0.3144        | 6.0   | 480  | 0.2513          | 0.9189   | 0.9175    | 0.9164 | 0.9142 |
| 0.2779        | 7.0   | 560  | 0.2274          | 0.9289   | 0.9304    | 0.9234 | 0.9252 |
| 0.1958        | 8.0   | 640  | 0.2443          | 0.9289   | 0.9267    | 0.9285 | 0.9268 |
| 0.1479        | 9.0   | 720  | 0.2054          | 0.9399   | 0.9378    | 0.9383 | 0.9371 |
| 0.1533        | 10.0  | 800  | 0.1779          | 0.9489   | 0.9485    | 0.9477 | 0.9476 |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3