metadata
language:
- en
metrics:
- code_eval
base_model:
- deepseek-ai/deepseek-coder-6.7b-base
pipeline_tag: text-generation
library_name: transformers
tags:
- code
AssertSolver
Model Details
Model Description
- Finetuned from model: deepseek-ai/deepseek-coder-6.7b-base
Model Sources
- Paper: Insights from Rights and Wrongs: A Large Language Model for Solving Assertion Failures in RTL Design
How to Get Started with the Model
Use the code below to get started with the model.
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_name = "1412312anonymous/AssertSolver"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
prompt = "Tell me how to fix the bugs inside: `always(*) // Pretend that this * should be rst`"
messages = [{"role": "user", "content": prompt}]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(
inputs,
max_new_tokens=512,
do_sample=False,
top_k=50,
top_p=0.95,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
print(tokenizer.decode(outputs[0][len(inputs[0]) :], skip_special_tokens=True))