Adriatogi's picture
End of training
dc57335 verified
metadata
license: other
base_model: nvidia/mit-b1
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b1-finetuned-segments-graffiti
    results: []

segformer-b1-finetuned-segments-graffiti

This model is a fine-tuned version of nvidia/mit-b1 on the Adriatogi/graffiti dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2171
  • Mean Iou: 0.8381
  • Mean Accuracy: 0.9102
  • Overall Accuracy: 0.9168
  • Accuracy Not Graf: 0.9379
  • Accuracy Graf: 0.8826
  • Iou Not Graf: 0.8748
  • Iou Graf: 0.8015

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Not Graf Accuracy Graf Iou Not Graf Iou Graf
0.4076 0.42 20 0.5389 0.6053 0.7982 0.7541 0.6139 0.9825 0.6073 0.6033
0.3386 0.83 40 0.2883 0.7962 0.8984 0.8898 0.8625 0.9343 0.8290 0.7634
0.1964 1.25 60 0.2514 0.8061 0.9009 0.8964 0.8819 0.9200 0.8406 0.7716
0.1723 1.67 80 0.2259 0.8269 0.9058 0.9100 0.9235 0.8880 0.8641 0.7898
0.1981 2.08 100 0.2338 0.8119 0.9040 0.8999 0.8869 0.9210 0.8459 0.7778
0.2827 2.5 120 0.2106 0.8251 0.9080 0.9084 0.9095 0.9066 0.8601 0.7902
0.1864 2.92 140 0.2241 0.8232 0.8956 0.9097 0.9546 0.8365 0.8675 0.7790
0.1362 3.33 160 0.2185 0.8257 0.8978 0.9109 0.9525 0.8431 0.8688 0.7826
0.1264 3.75 180 0.2155 0.8237 0.9054 0.9079 0.9156 0.8952 0.8602 0.7871
0.1688 4.17 200 0.2241 0.8206 0.8985 0.9072 0.9346 0.8625 0.8618 0.7795
0.1198 4.58 220 0.2080 0.8331 0.9087 0.9137 0.9296 0.8877 0.8697 0.7965
0.111 5.0 240 0.2033 0.8369 0.9133 0.9154 0.9221 0.9044 0.8710 0.8027
0.2003 5.42 260 0.2214 0.8262 0.9118 0.9084 0.8976 0.9261 0.8586 0.7938
0.1369 5.83 280 0.2044 0.8396 0.9147 0.9170 0.9245 0.9048 0.8734 0.8058
0.1901 6.25 300 0.1968 0.8411 0.9119 0.9185 0.9393 0.8846 0.8771 0.8050
0.1887 6.67 320 0.2098 0.8367 0.9100 0.9159 0.9344 0.8857 0.8731 0.8002
0.0738 7.08 340 0.2205 0.8357 0.9127 0.9147 0.9211 0.9043 0.8699 0.8014
0.1166 7.5 360 0.2274 0.8317 0.9046 0.9135 0.9420 0.8672 0.8709 0.7924
0.1247 7.92 380 0.2225 0.8310 0.9051 0.9130 0.9381 0.8722 0.8698 0.7923
0.1212 8.33 400 0.2230 0.8345 0.9108 0.9143 0.9254 0.8961 0.8699 0.7991
0.0979 8.75 420 0.2226 0.8352 0.9076 0.9153 0.9400 0.8752 0.8730 0.7973
0.0984 9.17 440 0.2189 0.8354 0.9106 0.9149 0.9287 0.8925 0.8712 0.7997
0.1151 9.58 460 0.2185 0.8382 0.9098 0.9170 0.9396 0.8800 0.8751 0.8013
0.0989 10.0 480 0.2171 0.8381 0.9102 0.9168 0.9379 0.8826 0.8748 0.8015

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2