|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: validation |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.4303256962227823 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7974 |
|
- Rouge1: 0.4303 |
|
- Rouge2: 0.2038 |
|
- Rougel: 0.3736 |
|
- Rougelsum: 0.3734 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 2.1585 | 1.0 | 1842 | 1.9205 | 0.4074 | 0.1838 | 0.3517 | 0.3518 | |
|
| 2.1545 | 2.0 | 3684 | 1.8882 | 0.4120 | 0.1914 | 0.3592 | 0.3588 | |
|
| 2.0888 | 3.0 | 5526 | 1.8290 | 0.4196 | 0.1939 | 0.3603 | 0.3601 | |
|
| 2.0272 | 4.0 | 7368 | 1.8269 | 0.4215 | 0.1975 | 0.3637 | 0.3635 | |
|
| 1.9871 | 5.0 | 9210 | 1.8224 | 0.4231 | 0.1943 | 0.3634 | 0.3633 | |
|
| 1.9535 | 6.0 | 11052 | 1.8055 | 0.4285 | 0.2030 | 0.3715 | 0.3715 | |
|
| 1.9322 | 7.0 | 12894 | 1.7954 | 0.4270 | 0.2018 | 0.3698 | 0.3697 | |
|
| 1.9181 | 8.0 | 14736 | 1.7974 | 0.4303 | 0.2038 | 0.3736 | 0.3734 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|