Amitava25's picture
Update README.md
9044843 verified
|
raw
history blame
2.1 kB
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
  - legal
  - India
  - BERT
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: legal_ai_India_ner_results
    results: []
datasets:
  - opennyaiorg/InLegalNER

legal_ai_India_ner_results

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1041
  • Precision: 0.7985
  • Recall: 0.8638
  • F1: 0.8298
  • Accuracy: 0.9697

Model description

This model classifies named entities from the Dataset of India supreme court judgements.

Intended uses & limitations

More information needed

Training and evaluation data

Training and Evaluation Data is taken from the opennyaiorg/INLegalNer dataset

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4662 1.0 917 0.1419 0.6784 0.7845 0.7276 0.9533
0.1146 2.0 1834 0.1084 0.7529 0.8508 0.7988 0.9623
0.0711 3.0 2751 0.1015 0.8031 0.8627 0.8318 0.9705
0.0546 4.0 3668 0.1041 0.7985 0.8638 0.8298 0.9697

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0