|
---
|
|
library_name: transformers
|
|
license: apache-2.0
|
|
base_model: ntu-spml/distilhubert
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- marsyas/gtzan
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: distilhubert-finetuned-gtzan
|
|
results:
|
|
- task:
|
|
name: Audio Classification
|
|
type: audio-classification
|
|
dataset:
|
|
name: GTZAN
|
|
type: marsyas/gtzan
|
|
config: all
|
|
split: train
|
|
args: all
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.82
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# distilhubert-finetuned-gtzan
|
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.6659
|
|
- Accuracy: 0.82
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-05
|
|
- train_batch_size: 8
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- num_epochs: 10
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
|
| 1.9399 | 1.0 | 113 | 1.8990 | 0.52 |
|
|
| 1.1827 | 2.0 | 226 | 1.2796 | 0.63 |
|
|
| 0.9971 | 3.0 | 339 | 1.0439 | 0.68 |
|
|
| 0.6898 | 4.0 | 452 | 0.8985 | 0.76 |
|
|
| 0.5038 | 5.0 | 565 | 0.7509 | 0.81 |
|
|
| 0.4896 | 6.0 | 678 | 0.7412 | 0.81 |
|
|
| 0.3013 | 7.0 | 791 | 0.6883 | 0.81 |
|
|
| 0.1222 | 8.0 | 904 | 0.7308 | 0.77 |
|
|
| 0.2297 | 9.0 | 1017 | 0.6878 | 0.8 |
|
|
| 0.1253 | 10.0 | 1130 | 0.6659 | 0.82 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.46.2
|
|
- Pytorch 2.5.1+cu121
|
|
- Datasets 3.1.0
|
|
- Tokenizers 0.20.3
|
|
|