BAAI
/

Aquila2-34B / README.md
ZacLiu's picture
Update README.md
131a9b7 verified
---
license: other
---
![Aquila_logo](./log.jpeg)
<h4 align="center">
<p>
<b>English</b> |
<a href="https://huggingface.co/BAAI/Aquila2-34B/blob/main/README_zh.md">简体中文</a> |
<p>
</h4>
We opensource our **Aquila2** series, now including **Aquila2**, the base language models, namely **Aquila2-7B** and **Aquila2-34B**, as well as **AquilaChat2**, the chat models, namely **AquilaChat2-7B** and **AquilaChat2-34B**, as well as the long-text chat models, namely **AquilaChat2-7B-16k** and **AquilaChat2-34B-16k**
The additional details of the Aquila model will be presented in the official technical report. Please stay tuned for updates on official channels.
## Updates 2024.6.6
We have updated the basic language model **Aquila2-34B**, which has the following advantages compared to the previous model:
* Replaced tokenizer with higher compression ratio:
| Tokenizer | Size | Zh | En | Code | Math | Average |
|-----------|-------|--------------------------|--------|-------|-------|---------|
| Aquila2-original | 100k | **4.70** | 4.42 | 3.20 | 3.77 | 4.02 |
| Qwen1.5 | 151k | 4.27 | 4.51 | 3.62 | 3.35 | 3.94 |
| Llama3 | 128k | 3.45 | **4.61** | 3.77 | **3.88** | 3.93 |
| Aquila2-new | 143k | 4.60 | **4.61** | **3.78** | **3.88** | **4.22** |
* The maximum processing length supported by the model has increased from 2048 to 8192
## Quick Start Aquila2-34B
### 1. Inference
Aquila2-34B is a base model that can be used for continuation.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig
device= "cuda:0"
# Model Name
model_name = 'BAAI/Aquila2-34B'
# load model and tokenizer
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True,
# quantization_config=quantization_config # Uncomment this one for 4-bit quantization
)
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
model.eval()
model.to(device)
# Example
text = "The meaning of life is"
tokens = tokenizer.encode_plus(text)['input_ids']
tokens = torch.tensor(tokens)[None,].to(device)
with torch.no_grad():
out = model.generate(tokens, do_sample=False, max_length=128, eos_token_id=tokenizer.eos_token_id)[0]
out = tokenizer.decode(out.cpu().numpy().tolist())
print(out)
```
## License
Aquila2 series open-source model is licensed under [ BAAI Aquila Model Licence Agreement](https://huggingface.co/BAAI/Aquila2-34B/blob/main/BAAI-Aquila-Model-License%20-Agreement.pdf)
## Citation
Feel free to cite the repo if you think Aquila2 is useful.
```python
@misc{zhang2024aquila2technicalreport,
title={Aquila2 Technical Report},
author={Bo-Wen Zhang and Liangdong Wang and Jijie Li and Shuhao Gu and Xinya Wu and Zhengduo Zhang and Boyan Gao and Yulong Ao and Guang Liu},
year={2024},
eprint={2408.07410},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2408.07410},
}
```