Baselhany's picture
Training finished
41c80ff verified
|
raw
history blame
2.56 kB
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Whisper tiny AR - BH
    results: []

Whisper tiny AR - BH

This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0206
  • Wer: 0.1174
  • Cer: 0.0425

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.0204 1.0 250 0.0218 0.1251 0.0425
0.0116 2.0 500 0.0125 0.1298 0.0427
0.0086 3.0 750 0.0116 0.1229 0.0421
0.0049 4.0 1000 0.0121 0.1227 0.0449
0.0041 5.0 1250 0.0130 0.1231 0.0415
0.0029 6.0 1500 0.0143 0.1207 0.0407
0.0013 7.0 1750 0.0155 0.12 0.0390
0.0018 8.0 2000 0.0165 0.1265 0.0449
0.0008 9.0 2250 0.0173 0.1245 0.0414
0.0002 10.0 2500 0.0179 0.1222 0.0406
0.0002 11.0 2750 0.0182 0.1186 0.0400
0.0002 12.0 3000 0.0184 0.1198 0.0398
0.0001 13.0 3250 0.0187 0.1198 0.0404
0.0001 14.0 3500 0.0206 0.1174 0.0425
0.0 15.0 3750 0.0190 0.1189 0.0399

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1